Latin squares without proper subsquares

Jack Allsop

Monash University

Joint work with Ian Wanless

Latin Squares

Definition

Let n be a positive integer. A Latin square of order n is an $n \times n$ matrix of n symbols such that each symbol occurs exactly once in each row and column.

1	2	3	4	5
2	4	1	5	3
3	5	4	2	1
4	1	5	3	2
5	3	2	1	4

Subsquares

Definition

Let L be a Latin square of order n. A subsquare of L is a submatrix of L which is itself a Latin square. A subsquare of L of order k is proper if $1<k<n$.

6	1	5	4	3	2
4	5	1	6	2	3
2	4	6	3	5	1
1	3	2	5	6	4
3	6	4	2	1	5
5	2	3	1	4	6

N_{∞} Latin squares

Definition

A Latin square is called N_{∞} if it contains no proper subsquares.

2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4
1	2	3	4	5

N_{∞} Latin squares

Definition

A Latin square is called N_{∞} if it contains no proper subsquares.

2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4
1	2	3	4	5

The Cayley table of a cyclic group of prime order is N_{∞}.

N_{∞} Latin squares

n	Species of Latin squares	Species of N_{∞} Latin squares
1	1	1
2	1	1
3	1	1
4	2	0
5	2	1
6	12	0
7	147	2
8	283657	3
9	19270853541	1589

N_{2} Latin squares are rare. Kwan, Sah, Sawhney and Simkin showed that the probability of a random Latin square of order n being N_{2} is $\exp \left(-\Omega\left(n^{2}\right)\right)$.

N_{∞} Latin squares

Theorem
There exists an N_{∞} Latin square of order n for all n not of the form $2^{a} 3^{b}$ with $a \geqslant 1$ and $b \geqslant 0$.

- It is conjectured that there exists an N_{∞} square of order n for all sufficiently large n (Hilton 1974).
- There exists an N_{∞} square of order $p q$ whenever p and q are distinct primes with $p q \neq 6$ (Heinrich 1980).
- There exists an N_{∞} square of all orders not of the form $2^{a} 3^{b}$ with $a \geqslant 0$ and $b \geqslant 0$ (Andersen and Mendelsohn 1982).
- There exists an N_{∞} square of order $3 m$ for all odd integers m (Maenhaut, Wanless, and Webb 2007).

N_{∞} Latin squares

We construct an N_{∞} of order n for each n of the form $2^{a} 3^{b} \notin\{4,6\}$ with $a \geqslant 1$ and $b \geqslant 0$.

Theorem
There exists an N_{∞} Latin square of order n for all $n \notin\{4,6\}$.

Direct products

Let L be a Latin square of order n and let M be a Latin square of order m. The direct product of L and M, denoted by $L \times M$, is a Latin square of order $n m$ whose row indices, column indices and symbols are in the set $[n] \times[m]$. It is defined by

$$
(L \times M)_{(i, j),(k, \ell)}=\left(L_{i, k}, M_{j, \ell}\right)
$$

Consider the following two Latin squares.

$$
L=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline
\end{array}
$$

$M=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 2 | 3 | 1 |
| 3 | 1 | 2 |.

Direct products

The following is $L \times M$ where we order the rows and columns by the first coordinate, and use the second to break ties.

$(1,1)$	$(1,2)$	$(1,3)$	$(2,1)$	$(2,2)$	$(2,3)$
$(1,2)$	$(1,3)$	$(1,1)$	$(2,2)$	$(2,3)$	$(2,1)$
$(1,3)$	$(1,1)$	$(1,2)$	$(2,3)$	$(2,1)$	$(2,2)$
$(2,1)$	$(2,2)$	$(2,3)$	$(1,1)$	$(1,2)$	$(1,3)$
$(2,2)$	$(2,3)$	$(2,1)$	$(1,2)$	$(1,3)$	$(1,1)$
$(2,3)$	$(2,1)$	$(2,2)$	$(1,3)$	$(1,1)$	$(1,2)$

Direct products

The following is $L \times M$ where we order the rows and columns by the second coordinate, and use the first to break ties.

$(1,1)$	$(2,1)$	$(1,2)$	$(2,2)$	$(1,3)$	$(2,3)$
$(2,1)$	$(1,1)$	$(2,2)$	$(1,2)$	$(2,3)$	$(1,3)$
$(1,2)$	$(2,2)$	$(1,3)$	$(2,3)$	$(1,1)$	$(2,1)$
$(2,2)$	$(1,2)$	$(2,3)$	$(1,3)$	$(2,1)$	$(1,1)$
$(1,3)$	$(2,3)$	$(1,1)$	$(2,1)$	$(1,2)$	$(2,2)$
$(2,3)$	$(1,3)$	$(2,1)$	$(1,1)$	$(2,2)$	$(1,2)$

Corrupted products

- Let A be an N_{∞} square of order n.
- Let B be a Latin square isotopic to A, such that $A[i, j]=B[i, j]$ if and only if $i=j=1$.
- Let M be an N_{∞} square of order m.
- Let $s \in[m-1]$.

Corrupted products

The corrupted product of (A, B) and M with shift s, denoted by $P=(A, B) *_{s} M$, is a Latin square of order nm whose row indices, column indices, and symbols are in the set $[n] \times[m]$. It is defined by,

$$
P[(i, j),(k, I)]= \begin{cases}(A[i, k], M[j, l]+s) & \text { if } i=k=1 \\ (B[i, k], M[j, I]) & \text { if } j=I=1 \text { and }(i, k) \neq(1,1), \\ (A[i, k], M[j, l]) & \text { otherwise. }\end{cases}
$$

This was introduced by Wanless.

Corrupted products

Corrupted products

Corrupted products

Theorem (Wanless 2001)
The corrupted product $(A, B) *_{s} M$ has only one proper subsquare (provided some mild conditions on $(A, B), M$ and s hold).

Cycle switches

1	2	3	4	5						
2	4	1	5	3						
3	5	4	2	1						
4	1	5	3	2						
5	3	2	1	4	\rightarrow	1	2	3	4	5
:---	:---	:---	:---	:---						
5	4	2	1	3						
3	5	4	2	1						
4	1	5	3	2						
2	3	1	5	4						

Constructing N_{∞} squares

We used a recursive construction to build N_{∞} Latin squares for all orders of the form $2^{a} 3^{b}$. Our method was as follows:

- Find a pair $\left(A_{8}, B_{8}\right)$ of Latin squares of order 8 and a pair $\left(A_{9}, B_{9}\right)$ of Latin squares of order 9 which satisfies certain properties.
- Given an N_{∞} square M of order m which satisfies some nice properties, construct corrupted products $\left(A_{8}, B_{8}\right) *_{1} M$ of order $8 m$ and $\left(A_{9}, B_{9}\right) *_{1} M$ of order $9 m$, both of which have a unique subsquare.
- Switch the corrupted product on a row cycle of length three which hits the unique subsquare exactly once, in such a way as to not introduce any new subsquares.

Conclusion

- We resolved the existence problem for N_{∞} Latin squares and N_{∞} Latin hypercubes.
- It is likely that a similar approach would work to construct N_{∞} squares of other orders.

Bibliography

 Andersen, L. D. and E. Mendelsohn (1982). "A direct construction for Latin squares without proper subsquares". Algebraic and geometric combinatorics. Vol. 65. North-Holland Math. Stud. North-Holland, Amsterdam, pp. 27-53. Heinrich, K. (1980). "Latin squares with no proper subsquares". J. Combin. Theory Ser. A 29.3, pp. 346-353.
 Kwan, M., A. Sah, and M. Sawhney (2022). "Large deviations in random Latin squares". Bull. Lond. Math. Soc. 54.4, pp. 1420-1438.

Maenhaut, B., I. M. Wanless, and B. S. Webb (2007). "Subsquare-free Latin squares of odd order". European J. Combin. 28.1, pp. 322-336.
远 Wanless, I. M. (2001). "Latin squares with one subsquare". J. Combin. Des. 9.2, pp. 128-146.

