Groups of Lie Type Acting on Generalised
 Quadrangles

45th Australasian Combinatorics Conference

Vishnuram Arumugam
Supervised by: Michael Giudici and John Bamberg
December 13, 2023
University of Western Australia

Groups of Lie Type (Examples)

Groups of Lie Type (Examples)

- Projective special linear group: $\operatorname{PSL}(n, q)$

Groups of Lie Type (Examples)

- Projective special linear group: $\operatorname{PSL}(n, q)$
- Symplectic group: $\operatorname{Sp}(n, q)$

Groups of Lie Type (Examples)

- Projective special linear group: $\operatorname{PSL}(n, q)$
- Symplectic group: $\operatorname{Sp}(n, q)$
- Suzuki and Ree groups

Groups of Lie Type (Examples)

- Projective special linear group: $\operatorname{PSL}(n, q)$
- Symplectic group: $\operatorname{Sp}(n, q)$
- Suzuki and Ree groups
- $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$

Groups of Lie Type

- Jacques Tits (1960): realise groups of Lie type as symmetries of geometric objects (called buildings)

Groups of Lie Type

- Jacques Tits (1960): realise groups of Lie type as symmetries of geometric objects (called buildings)
- Generalised polygons: irreducible spherical buildings of rank 2

Groups of Lie Type

- Jacques Tits (1960): realise groups of Lie type as symmetries of geometric objects (called buildings)
- Generalised polygons: irreducible spherical buildings of rank 2
- Rank 3 and above classified* by Weiss and Tits

Groups of Lie Type

- Jacques Tits (1960): realise groups of Lie type as symmetries of geometric objects (called buildings)
- Generalised polygons: irreducible spherical buildings of rank 2
- Rank 3 and above classified* by Weiss and Tits
- Rank 2 remains unclassified

Generalised Polygons

Generalised n-gon

- Two points lie in at most one line, two lines intersect in at most one point
- No k-gons for $k \in\{3, \ldots, n-1\}$
- Any two elements (points or lines) is contained in an n-gon
- k-gon: sequence of points a_{0}, \ldots, a_{k-1} where a_{i} and a_{i+1} lie in a common line $(+$ is $\bmod k)$

Generalised Polygons

- Flag - point-line incident pair
- Order (s, t) : every line contains $s+1$ points and every point lies on $t+1$ lines
- Thick: $s, t \geqslant 2$
- Higman and Feit (1964): thick implies $n \in\{2,3,4,6,8\}$

Examples

- $n=3$: projective planes

Examples

- $n=3$: projective planes
- $n=4$: generalised quadrangles

Examples

- $n=3$: projective planes
- $n=4$: generalised quadrangles
- $n=6$: two infinite families of generalised hexagons (and their duals)

Examples

- $n=3$: projective planes
- $n=4$: generalised quadrangles
- $n=6$: two infinite families of generalised hexagons (and their duals)
- $n=8$: one infinite family of generalised octagon (and its dual)

Generalised Quadrangle

Generalised Quadrangle

- Two points lie in at most one line, two lines intersect in at most one point
- Given a line L and a point x not on L, there is a unique point y on L such that x and y are on a line

Figure 1: Second GQ Axiom

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form
- Define 「 with
- points: 1-spaces of V

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form
- Define 「 with
- points: 1-spaces of V
- lines: totally isotropic 2 -spaces

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form
- Define 「 with
- points: 1-spaces of V
- lines: totally isotropic 2 -spaces
- where U is totally isotropic if $B(u, v)=0$ for every $u, v \in U$

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form
- Define 「 with
- points: 1-spaces of V
- lines: totally isotropic 2 -spaces
- where U is totally isotropic if $B(u, v)=0$ for every $u, v \in U$
- This generalised quadrangle is denoted by $W(3, q)$

Example

- Let $V=\mathbb{F}_{q}^{4}$ and B be a non-degenerate alternating bilinear form
- Define 「 with
- points: 1 -spaces of V
- lines: totally isotropic 2-spaces
- where U is totally isotropic if $B(u, v)=0$ for every $u, v \in U$
- This generalised quadrangle is denoted by $W(3, q)$
- Automorphism group is $\mathrm{P} \Gamma \mathrm{Sp}_{4}(q)$

Example

- Examples from sesquilinear forms are called classical generalised quadrangles

Example

- Examples from sesquilinear forms are called classical generalised quadrangles
- Other examples: flock quadrangles

Example

- Examples from sesquilinear forms are called classical generalised quadrangles
- Other examples: flock quadrangles
- Can we classify them?

Symmetry Conditions

Transitivity and Primitivity

Let G act on a set Ω.

- Transitive: for every $\alpha, \beta \in \Omega$, there is a $g \in G$ such that $\alpha^{g}=\beta$
- Primitive: G preserves only the trivial partitions of Ω
- $\{\Omega\}$
- $\{\{\alpha\}: \alpha \in \Omega\}$
- Point-primitivity
- Line-primitivity
- Flag-transitivity (recall: flag is a point-line incident pair)

Other Symmetry Conditions

Buekenhout, Van Maldeghem (1994)

Let G act distance-transitively on a generalised quadrangle Γ.
Then G acts primitively on the points of Γ.

Other Symmetry Conditions

Buekenhout, Van Maldeghem (1994)
Let G act distance-transitively on a generalised quadrangle Γ.
Then G acts primitively on the points of Γ.

Bamberg, Li, Swartz (2018)
Let G act antiflag-transitively on a generalised quadrangle.
Then that generalised quadrangle is $\mathrm{GQ}(3,5)$ or $\mathrm{GQ}(5,3)$.

Schneider, Van Maldeghem (2008)

Hypothesis Let G act point-primitively, line-primitively and flag-transitively on a generalised hexagon or octagon

Schneider, Van Maldeghem (2008)

Hypothesis Let G act point-primitively, line-primitively and flag-transitively on a generalised hexagon or octagon

Conclusion Then G is almost simple of Lie type

Almost simple $S \leq G \leq \operatorname{Aut}(S)$ where S is a non-abelian simple group

Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point-primitively on a generalised hexagon or octagon

Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point-primitively on a generalised hexagon or octagon

Conclusion Then G is almost simple of Lie type

Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point and line-primitively on a generalised hexagon or octagon Γ.

Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point and line-primitively on a generalised hexagon or octagon Γ.

Hypothesis Suppose G is almost simple with socle $\operatorname{PSL}(n, q)$ with $n \geqslant 2$ and take a point α in 「

Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point and line-primitively on a generalised hexagon or octagon Γ.

Hypothesis Suppose G is almost simple with socle $\operatorname{PSL}(n, q)$ with $n \geqslant 2$ and take a point α in 「

Conclusion Then G_{α} is not the stabiliser in G of a subspace of the natural module $V=\left(\mathbb{F}_{q}\right)^{n}$.

Morgan, Popiel (2016)

Hypothesis Let G act primitively on the points of a generalised hexagon or octagon with $T \leq G \leq \operatorname{Aut}(T)$ with T simple.

Morgan, Popiel (2016)

Hypothesis Let G act primitively on the points of a generalised hexagon or octagon with $T \leq G \leq \operatorname{Aut}(T)$ with T simple.

Conclusion Then T cannot be ${ }^{2} \mathrm{~B}_{2}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$.

Morgan, Popiel (2016)

Hypothesis Let G act primitively on the points of a generalised hexagon or octagon with $T \leq G \leq \operatorname{Aut}(T)$ with T simple.

Conclusion Then T cannot be ${ }^{2} \mathrm{~B}_{2}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$.

Hypothesis Suppose T is ${ }^{2} \mathrm{~F}_{4}(q)$

Morgan, Popiel (2016)

Hypothesis Let G act primitively on the points of a generalised hexagon or octagon with $T \leq G \leq \operatorname{Aut}(T)$ with T simple.
Conclusion Then T cannot be ${ }^{2} \mathrm{~B}_{2}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$.

Hypothesis Suppose T is ${ }^{2} \mathrm{~F}_{4}(q)$
Conclusion Then the generalised polygon is the classical generalised octagon or its dual.

Bamberg, Giudici, Morris, Royle, Spiga (2011)

Hypothesis Let G act primitively on the points and lines of a generalised quadrangle.

Bamberg, Giudici, Morris, Royle, Spiga (2011)

Hypothesis Let G act primitively on the points and lines of a generalised quadrangle.

Conclusion Then G is almost simple.

Bamberg, Giudici, Morris, Royle, Spiga (2011)

Hypothesis Let G act primitively on the points and lines of a generalised quadrangle.

Conclusion Then G is almost simple.

Hypothesis Suppose G is also flag-transitive.

Bamberg, Giudici, Morris, Royle, Spiga (2011)

Hypothesis Let G act primitively on the points and lines of a generalised quadrangle.

Conclusion Then G is almost simple.

Hypothesis Suppose G is also flag-transitive.
Conclusion Then G is almost simple of Lie type.

Bamberg, Evans (2021)

- No sporadic almost simple group can act primitively on points of any generalised quadrangle.

Feng, Lu (2023)

Hypothesis Let G act point and line-primitively on a generalised quadrangle Γ.

Feng, Lu (2023)

Hypothesis Let G act point and line-primitively on a generalised quadrangle Γ.

Hypothesis Suppose G is almost simple with socle $\operatorname{PSL}(2, q)$ with $q \geqslant 4$.

Feng, Lu (2023)

Hypothesis Let G act point and line-primitively on a generalised quadrangle Γ.
Hypothesis Suppose G is almost simple with socle $\operatorname{PSL}(2, q)$ with $q \geqslant 4$.

Conclusion Then $q=9$ and Γ is the symplectic quadrangle $W(2)$.

Results

- Problem: Let $G={ }^{2} B_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Γ be?

Results

- Problem: Let $G={ }^{2} B_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Г be?
- Strategy: primitive action iff point-stabiliser is maximal

Results

- Problem: Let $G={ }^{2} B_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Г be?
- Strategy: primitive action iff point-stabiliser is maximal
- Maximal subgroups of G :
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian, C_{q-1} is cyclic
- $D_{2(q-1)}$
- $C_{q \pm \sqrt{2 q}+1}: C_{4}$
- ${ }^{2} B_{2}\left(q_{0}\right)$, where $q_{0}^{r}=q, q_{0}>2$ and r is prime

Results

- Problem: Let $G={ }^{2} B_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Г be?
- Strategy: primitive action iff point-stabiliser is maximal
- Maximal subgroups of G :
- $E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian, C_{q-1} is cyclic
- $D_{2(q-1)}$
- $C_{q \pm \sqrt{2 q}+1}: C_{4}$
- ${ }^{2} B_{2}\left(q_{0}\right)$, where $q_{0}^{r}=q, q_{0}>2$ and r is prime
- Go through cases

Results

- Use conditions:
- (Higman Inequality). $s \leqslant t^{2}, t \leqslant s^{2}$
- (Divisibility Condition). $s+t$ divides $s t(s+1)(t+1)$
- Technical divisibility conditions involving subdegrees

Results

- Use conditions:
- (Higman Inequality). $s \leqslant t^{2}, t \leqslant s^{2}$
- (Divisibility Condition). $s+t$ divides $s t(s+1)(t+1)$
- Technical divisibility conditions involving subdegrees
- Cannot have $s=t$ (proof involves some number theory)

Results

- Use conditions:
- (Higman Inequality). $s \leqslant t^{2}, t \leqslant s^{2}$
- (Divisibility Condition). $s+t$ divides $s t(s+1)(t+1)$
- Technical divisibility conditions involving subdegrees
- Cannot have $s=t$ (proof involves some number theory)
- s and t must both be odd

Results

- Use conditions:
- (Higman Inequality). $s \leqslant t^{2}, t \leqslant s^{2}$
- (Divisibility Condition). $s+t$ divides $s t(s+1)(t+1)$
- Technical divisibility conditions involving subdegrees
- Cannot have $s=t$ (proof involves some number theory)
- s and t must both be odd
- $s+1$ must have a "small" 2-part

Results

- Use conditions:
- (Higman Inequality). $s \leqslant t^{2}, t \leqslant s^{2}$
- (Divisibility Condition). $s+t$ divides $s t(s+1)(t+1)$
- Technical divisibility conditions involving subdegrees
- Cannot have $s=t$ (proof involves some number theory)
- s and t must both be odd
- $s+1$ must have a "small" 2-part
- Conjecture: there are no solutions for s, t satisfying the conditions above
- Suggested by numerical evidence

Results

- Problem: Let $G={ }^{2} G_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Г be?

Results

- Problem: Let $G={ }^{2} G_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Γ be?
- Maximal subgroups of G :
- $E_{q} \cdot E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian, C_{q-1} is cyclic
- $C_{2} \times \operatorname{PSL}(2, q)$
- $\left(E_{4} \times D_{(q+1) / 2}\right): C_{3}$
- $C_{q \pm \sqrt{3 q}+1}: C_{6}$
- ${ }^{2} G_{2}\left(q_{0}\right)$, where $q_{0}^{r}=q, q_{0}>3$ and r is prime

Results

- Problem: Let $G={ }^{2} G_{2}(q)$ act primitively on the points and lines of a generalised quadrangle Γ. What can Γ be?
- Maximal subgroups of G :
- $E_{q} \cdot E_{q} \cdot E_{q} \cdot C_{q-1}$, where E_{q} is elementary abelian, C_{q-1} is cyclic
- $C_{2} \times \operatorname{PSL}(2, q)$
- $\left(E_{4} \times D_{(q+1) / 2}\right): C_{3}$
- $C_{q \pm \sqrt{3 q}+1}: C_{6}$
- ${ }^{2} G_{2}\left(q_{0}\right)$, where $q_{0}^{r}=q, q_{0}>3$ and r is prime
- Cannot have $s=t$ (proof involves some number theory)

