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Groups of Lie Type (Examples)

• Projective special linear group: PSL(n, q)

• Symplectic group: Sp(n, q)

• Suzuki and Ree groups

• E6, E7, E8, F4, G2
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Groups of Lie Type

• Jacques Tits (1960): realise groups of Lie type as symmetries

of geometric objects (called buildings)

• Generalised polygons: irreducible spherical buildings of rank 2

• Rank 3 and above classified* by Weiss and Tits

• Rank 2 remains unclassified
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Generalised Polygons

Generalised n-gon

• Two points lie in at most one line, two lines intersect in at

most one point

• No k-gons for k ∈ {3, . . . , n − 1}
• Any two elements (points or lines) is contained in an n-gon

• k-gon: sequence of points a0, . . . , ak−1 where ai and ai+1 lie

in a common line (+ is mod k)
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Generalised Polygons

• Flag - point-line incident pair

• Order (s, t): every line contains s + 1 points and every point

lies on t + 1 lines

• Thick: s, t ⩾ 2

• Higman and Feit (1964): thick implies n ∈ {2, 3, 4, 6, 8}
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Examples

• n = 3: projective planes

• n = 4: generalised quadrangles

• n = 6: two infinite families of generalised hexagons (and their

duals)

• n = 8: one infinite family of generalised octagon (and its dual)
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Generalised Quadrangle

Generalised Quadrangle

• Two points lie in at most one line, two lines intersect in at

most one point

• Given a line L and a point x not on L, there is a unique point

y on L such that x and y are on a line

x

y L

Figure 1: Second GQ Axiom
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Example

• Let V = F4
q and B be a non-degenerate alternating bilinear

form

• Define Γ with

• points: 1-spaces of V

• lines: totally isotropic 2-spaces

• where U is totally isotropic if B(u, v) = 0 for every u, v ∈ U

• This generalised quadrangle is denoted by W (3, q)

• Automorphism group is PΓSp4(q)
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Example

• Examples from sesquilinear forms are called classical

generalised quadrangles

• Other examples: flock quadrangles

• Can we classify them?
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Symmetry Conditions

Transitivity and Primitivity

Let G act on a set Ω.

• Transitive: for every α, β ∈ Ω, there is a g ∈ G such that

αg = β

• Primitive: G preserves only the trivial partitions of Ω

• {Ω}
• {{α} : α ∈ Ω}

• Point-primitivity

• Line-primitivity

• Flag-transitivity (recall: flag is a point-line incident pair)
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Other Symmetry Conditions

Buekenhout, Van Maldeghem (1994)

Let G act distance-transitively on a generalised quadrangle Γ.

Then G acts primitively on the points of Γ.

Bamberg, Li, Swartz (2018)

Let G act antiflag-transitively on a generalised quadrangle.

Then that generalised quadrangle is GQ(3, 5) or GQ(5, 3).
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Schneider, Van Maldeghem (2008)

Hypothesis Let G act point-primitively, line-primitively and

flag-transitively on a generalised hexagon or

octagon

Conclusion Then G is almost simple of Lie type

Almost simple S ≤ G ≤ Aut(S) where S is a non-abelian simple

group
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Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point-primitively on a generalised

hexagon or octagon

Conclusion Then G is almost simple of Lie type
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Bamberg, Glasby, Popiel, Praeger, Schneider (2017)

Hypothesis Let G act point and line-primitively on a

generalised hexagon or octagon Γ.

Hypothesis Suppose G is almost simple with socle PSL(n, q)

with n ⩾ 2 and take a point α in Γ

Conclusion Then Gα is not the stabiliser in G of a subspace of

the natural module V = (Fq)
n.
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Morgan, Popiel (2016)

Hypothesis Let G act primitively on the points of a generalised

hexagon or octagon with T ≤ G ≤ Aut(T ) with T

simple.

Conclusion Then T cannot be 2B2(q) or
2G2(q).

Hypothesis Suppose T is 2F4(q)

Conclusion Then the generalised polygon is the classical

generalised octagon or its dual.
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Bamberg, Giudici, Morris, Royle, Spiga (2011)

Hypothesis Let G act primitively on the points and lines of a

generalised quadrangle.

Conclusion Then G is almost simple.

Hypothesis Suppose G is also flag-transitive.

Conclusion Then G is almost simple of Lie type.
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Bamberg, Evans (2021)

• No sporadic almost simple group can act primitively on

points of any generalised quadrangle.
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Feng, Lu (2023)

Hypothesis Let G act point and line-primitively on a

generalised quadrangle Γ.

Hypothesis Suppose G is almost simple with socle PSL(2, q)

with q ⩾ 4.

Conclusion Then q = 9 and Γ is the symplectic quadrangle

W (2).
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Results

• Problem: Let G = 2B2(q) act primitively on the points and

lines of a generalised quadrangle Γ. What can Γ be?

• Strategy: primitive action iff point-stabiliser is maximal

• Maximal subgroups of G :

• Eq.Eq.Cq−1, where Eq is elementary abelian, Cq−1 is cyclic

• D2(q−1)

• Cq±
√
2q+1 : C4

• 2B2(q0), where qr0 = q, q0 > 2 and r is prime

• Go through cases
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Results

• Use conditions:

• (Higman Inequality). s ⩽ t2, t ⩽ s2

• (Divisibility Condition). s + t divides st(s + 1)(t + 1)

• Technical divisibility conditions involving subdegrees

• Cannot have s = t (proof involves some number theory)

• s and t must both be odd

• s + 1 must have a “small” 2-part

• Conjecture: there are no solutions for s, t satisfying the

conditions above

• Suggested by numerical evidence
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Results

• Problem: Let G = 2G2(q) act primitively on the points and

lines of a generalised quadrangle Γ. What can Γ be?

• Maximal subgroups of G :

• Eq.Eq.Eq.Cq−1, where Eq is elementary abelian, Cq−1 is cyclic

• C2 × PSL(2, q)

• (E4 × D(q+1)/2) : C3

• Cq±
√
3q+1 : C6

• 2G2(q0), where qr0 = q, q0 > 3 and r is prime

• Cannot have s = t (proof involves some number theory)
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