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Given n1 points and n2 closed rectangles with axis-parallel sides in R2.

Incidences between points and rectangles

Question: If no k rectangles have k points in common, what is the maximum

Without the assumption that no k boxes have k points in common,
there could be n1 · n2 incidences.

An incidence is a point-rectangle (p, r) pair such that point p lies in the rectangle r .

number of incidences?



For fixed k, what is the maximum number of edges in a Kk,k -free bipartite graph

Zarankiewicz’s problem

G = (V1,V2;E)?

For k ∈ N, let Kk,k be the complete bipartite graph with k vertices in each block.
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For fixed k, what is the maximum number of edges in a Kk,k -free bipartite graph

Zarankiewicz’s problem

G = (V1,V2;E)?

For k ∈ N, let Kk,k be the complete bipartite graph with k vertices in each block.

Theorem (Kövári–Sós–Turán ’54):

If G = (V1,V2;E) with |V1|+ |V2| = n is Kk,k -free, then |E | ≤ Ok

(
n2−1/k

)
.

A question in extremal graph theory:

k = 2: Incidence graph of a finite projective plane (Klein ’38?)

k = 3: Point-sphere incidence graphs in F3
p for p > 3 (Brown ’66).

Known bounds:

Conjecture: The KST bound is tight for all k ∈ N.

Projective norm graphs (Alon-Rónyai-Szabó ’99).

Open for k ≥ 4
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Given n1 points and n2 axis-parallel rectangles in R2, let G = (V1,V2;E) be the

If no k rectangles have k points in common, then G is Kk,k -free. So by the

incidence graph. That is:

Vertices in V1 correspond to points, vertices in V2 correspond to rectangles, and
E = {(p, r) ∈ V1 × V2 : point p is in rectangle r}.

KST Theorem, the number of incidences is Ok

(
n2−1/k

)
.

Incidences between points and rectangles

No K2,2 ( )
no two rectangles have
two points in common
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Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum number of incidences?

The point-line incidence graph does not contain a K2,2, so by the KST Theorem

the number of incidences is O
(
n3/2

)
.

of objects in Rd .
The bounds implied by the KST Theorem can often be improved for incidence graphs

2
1

3

2

2
1

1



Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum number of incidences?

The point-line incidence graph does not contain a K2,2, so by the KST Theorem

the number of incidences is O
(
n3/2

)
.

Theorem (Szemerédi-Trotter ’83):
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Geometric Incidence Problems

Given n1 points and n2 lines in R2, what is the maximum number of incidences?

The point-line incidence graph does not contain a K2,2, so by the KST Theorem

the number of incidences is O
(
n3/2

)
.

Theorem (Szemerédi-Trotter ’83):

The number of incidences is O
(
n4/3

)
.

This is optimal, i.e., there exist configurations with Ω
(
n4/3

)
incidences.

of objects in Rd .
The bounds implied by the KST Theorem can often be improved for incidence graphs
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Geometric Incidence Problems

Incidence problems have numerous connections to other areas, and have been

studied extensively.

Erdős-Szemerédi sum-product conjecture

Erdős distinct distance and unit distance conjectures

Incidences between points and curves in R≥2

Incidences between points and surfaces in R≥3

Harmonic Analysis, Number Theory, Model Theory, Computer Science, and more

Incidences in finite fields and complex numbers
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exists a system of t polynomial inequalities φ(x , y) of degree at most D
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.
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Zarankiewicz’s problem for semialgebraic graphs

A graph G = (V1,V2;E) is semialgebraic if V1 ⊂ Rd1 , V2 ⊂ Rd2 and there
exists a system of t polynomial inequalities φ(x , y) of degree at most D
such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.

Incidence graph of points and lines in R2 is semialgebraic:
Lines correspond to points in R2, e.g., the line b1x + b2y = 1 corresponds to the
point (b1, b2).

Theorem (Fox-Pach-Sheffer-Suk-Zahl ’12):
Let G = (V1,V2;E) be a semialgebraic graph of constant complexity s, with

|V1|+ |V2| = n. If G is Kk,k -free, then |E | = Ok,s

(
n2−c

)
, where 0 < c < 1 depends

only on d1 and d2.

Common generalization of many geometric incidence results.

s := max{d1, d2, t,D} is the complexity of the graph, assumed to be bounded above
by a constant.

Now V1,V2 ⊆ R2 and E = {(a, b) ∈ V1 × V2 : a · b = 1}.
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Incidences between points and rectangles

The KST Theorem implies the bound Ok

(
n2−1/k

)
.

Axis-parallel rectangles correspond to points in R4 — the coordinates of the bottom
left endpoint along with the coordinates of the top right endpoint.

The point-rectangle incidence graph is semialgebraic in R2 × R4:

In the point-line incidence graph, E is defined by the inner product, using
addition and multiplication.

In the point-rectangle incidence graph, E is defined using only ordering.

Why we should expect better bounds:

The FPSSZ Theorem implies the bound Ok,ε

(
n10/7+ε

)
for every ε > 0.

Now V1 ⊆ R2,V2 ⊆ R4 and E is defined using four inequalities.
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Theorem 1 (B.-Chernikov-Starchenko-Tao-Tran ’20):

(i) Given n1 points and n2 axis-parallel rectangles in R2 (with n = n1 + n2), if no
k rectangles have k points in common, the number of incidences is Ok

(
n log4 n

)
.

(ii) For arbitrarily large n, there exist a set of n points and n dyadic rectangles

is Ω
(
n log n
log log n

)
.

such that the incidence graph is K2,2-free and the number of incidences

(iii) If the rectangles are dyadic, then the number of incidences is Ok

(
n log n
log log n

)
.

For any set of points and rectangles, the number of incidences is Ok

(
n log n
log log n

)Har-Peled and Chan ’22:
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Zarankiewicz’s problem for semilinear graphs

Theorem 2 (B.-Chernikov-Starchenko-Tao-Tran ’20):

Let G = (V1,V2;E) be a semilinear graph with |V1|+ |V2| = n. If G is Kk,k -free,
then |E | = Ok,φ (n logs n).

A graph G = (V1,V2;E) is semilinear if V1 ⊂ Rd1 , V2 ⊂ Rd2 and there exists a
system of s linear inequalities φ(x , y) such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.



Zarankiewicz’s problem for semilinear graphs

Functions that are coordinate-wise monotone.
Any ordered division ring instead of R.
More generally:

Theorem 2 (B.-Chernikov-Starchenko-Tao-Tran ’20):

Let G = (V1,V2;E) be a semilinear graph with |V1|+ |V2| = n. If G is Kk,k -free,
then |E | = Ok,φ (n logs n).

A graph G = (V1,V2;E) is semilinear if V1 ⊂ Rd1 , V2 ⊂ Rd2 and there exists a
system of s linear inequalities φ(x , y) such that E = {(a, b) ∈ V1 × V2 : φ(a, b)}.

A function f : Rd1 × Rd2 → R is coordinate-wise monotone if

for any a, a′ ∈ V1 ∈ Rd1 and b, b′ ∈ Rd2 , we have

f (a, b) ≤ f (a, b′) ⇐⇒ f (a′, b) ≤ f (a′, b′)

f (a, b) ≤ f (a′, b) ⇐⇒ f (a, b′) ≤ f (a′, b′)
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Let fs(n) be the maximum number of edges in a Kk,k -free graph on n vertices and
defined by s linear equations.
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Proof of Theorem 2

Proof Idea:
Induction on number of linear equations s.

Let fs(n) be the maximum number of edges in a Kk,k -free graph on n vertices and
defined by s linear equations.

If s = 0, then G is the complete graph, so either |V1| < k or |V2| < k.
So, trivially, |E | ≤ kn.

Base Case: f0(n) ≤ kn

Use the order structure of R to split up the graph and control incidences.

Inductive Step: Enough to show fs(n) ≤ 2fs
(
⌊ n
2
⌋
)
+ fs−1(n).

Suppose L is one of the defining inequalities. Assume L has the form L1(x) < L2(y)
with L1 : V1 → R and L2 : V2 → R.
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Proof of Theorem 2

L has the form L1(x) < L2(y).

Let a ∈ R be a point that bisects L1(V1) ∪ L2(V2).

|E ∩ (V+
1 × V−

2 )| = 0

|E ∩ (V−
1 × V+

2 )| ≤ fs−1(n)

|E ∩ (V−
1 × V−

2 )| ≤ fs
(
⌊ n
2
⌋
)

|E ∩ (V+
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2 )| ≤ fs
(
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2
⌋
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2
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1

V−
2
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Proof of Theorem 2

That is fs(n) ≤ 2fs
(
⌊ n
2
⌋
)
+ fs−1(n).

L has the form L1(x) < L2(y).

Let a ∈ R be a point that bisects L1(V1) ∪ L2(V2).

|E ∩ (V+
1 × V−

2 )| = 0

|E ∩ (V−
1 × V+
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Theorem (Erdős ’64):
Let H = (V1,V2, . . . ,Vr ,E) be a r -partite r -uniform hypergraph with

|V1|+ · · ·+ |Vr | = n. If H is Kk,...,k -free, then |E | = Or,k

(
n
r− 1

kr−1

)
.

can not be substantially improved.

Probabilistic lower bounds of the form |E | = Ωr,k

(
n
r− c

kr−1

)
. That is, the exponent

Theorem (Do ’18):
Let H = (V1,V2, . . . ,Vr ,E) be a semialgebraic hypergraph with
|V1|+ · · ·+ |Vr | = n. If H is Kk,··· ,k -free, then |E | = Or,k,φ

(
nr−c

)
where 0 < c < 1

depends only on d1, d2, . . . , dr .

Theorem 3 (B.-Chernikov-Starchenko-Tao-Tran ’20):
Let H = (V1,V2, . . . ,Vr ,E) be a semilinear hypergraph with

|V1|+ · · ·+ |Vr | = n. If H is Kk,··· ,k -free, then |E | = Or,k,φ

(
nr−1 logc n

)
where

c depends only on r and the number of defining inequalities.
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Combinatorial geometric consequences

Given n1 points and n2 polytopes in Rd cut out from half-spaces with normal vectors

in a fixed finite set, such that the incidence graph does not contain Kk,k , the
number of incidences is O

(
n1+ε

)
for any ε > 0.

Point-polytope incidences:

Unit-distances for polygonal norms:

Given n points in Rd equipped with a polygonal norm such that any two points have

at most k points at the same distance, the number of unit distances is Ok (n
1+ε).

Erdős Unit Distance Conjecture: In the ℓ2 norm, the number of unit distances

determined by any set of n points in R2 is O(n1+ε).
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Model theorists study structures (e.g. (Z; +), (C; +,×), etc) by considering the

set of all first order sentences true in the structure, refered to as the theory of the
structure.

Isomorphic structures have the same theory, but the converse is not true.
In fact, given an infinite structure, there is at least one structure per infinite

cardinality with the same theory.

E.g., any real closed field has the same theory as (R, <,+,×).

real algebraic numbers

hyperreal numbers

computable numbers
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structure (up to isomorphism) having the same theory as the given structure.
A structure is tame if, for some infinite cardinality κ, there is exactly one

One consequence of tameness is that definable graphs in the structure are simple

in a combinatorial sense, resulting in better structure and bounds for extremal

Ramsey theory

Regularity Lemmas

Zarankiewicz’s problem

problems such as

Example: Semialgebraic graphs are precisely the definable graphs in (R, <,+,×).

Example: Semilinear graphs are definable graphs in o-minimal modular structures.

Theorem 3, along with results in model theory, gives a combinatorial characterisation
of modularity for o-minimal structures.



Future work

(e.g., definable graphs in abelian groups).

Find more general families that satisfy a linear bound for Zarankiewicz’s problem

Quantitive improvements on the regularity lemma.

Ramsey properties (some results have been obtained by Tomon-Jin).



Thank you!


