List Colouring and Maximal Local Edge Connectivity

Sam Bastida

Victoria University of Wellington

2022

Colouring

A (proper) k-colouring of a graph assigns one of k colours to each vertex of a graph such that no two adjacent vertices have the same colour.

A graph is k-colourable if it permits a k-colouring. Is this graph 3-colourable?

Colouring

A (proper) k-colouring of a graph assigns one of k colours to each vertex of a graph such that no two adjacent vertices have the same colour.

A graph is k-colourable if it permits a k-colouring. Is this graph 3-colourable?

Yes

Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph with maximum degree k. Then G is k-colourable if and only if G is not a complete graph or an odd cycle.

(a) An odd cycle with

(b) A complete graph

(c) A graph with maximum degree 2 that with maximum degree 4 maximum degree 4 that is not 2 -colourable that is not 4-colourable is 4-colourable

Connectivity

A graph is k-connected if there are k internally vertex-disjoint paths between any two vertices in the graph.

A block is a maximal subgraph that is either 2-connected or isomorphic to K_{2}.

Maximal Local Connectivity

A graph has maximal local connectivity k if there are at most k internally vertex disjoint paths between any two vertices in the graph.

Proposition (Aboulker, Brettell, Havet, Marx, Trotignon, 2018)
The problem of deciding if a 2-connected graph with maximal local connectivity 3 is 3 -colourable is NP-complete.

Maximal Local Edge Connectivity

The local edge connectivity between u and v is the maximum number of edge-disjoint paths between u and v.

A graph has maximal local edge connectivity k if the local edge connectivity between any two vertices is at most k.

If a graph has maximum degree k then it has maximal local edge connectivity k. If a graph has maximal local edge connectivity k then it has maximal local connectivity k.

Maximal Local Edge Connectivity

Theorem (Stiebitz and Toft, 2018)
Let G be a graph with maximal local edge connectivity $k, k \geq 3$. Then G is k-colourable if and only if it has no block in \mathcal{H}_{k}.

The class \mathcal{H}_{3} is the class of Hajós joins of odd wheels. The class $\mathcal{H}_{k}(k>3)$ is the class of Hajós joins of K_{k} graphs.

Hajós Joins

List Colouring

A list assignment, ϕ, of a graph, assigns a list of colours to each vertex. A ϕ-colouring assigns a colour to each vertex, v, from $\phi(v)$ such that no adjacent vertices are assigned the same colour.

List Colouring

A k-list assignment is a list assignment for which $|\phi(v)|=k$ for all v. A graph, G, is k-choosable if there exists a ϕ-colouring for every k-list assignment ϕ of G.

Theorem (Erdős, Rubin and Taylor, 1979)
Let G be a connected graph with maximum degree k. Then G is k-choosable if and only if G is not a complete graph or an odd cycle.

List Colouring for Maximal Local Edge Connectivity

Lemma (B and Brettell, 2023+)
Let G be a k-connected graph with maximal local edge connectivity k. Then G is k-choosable if and only if it is k-colourable ($k \geq 3$).

So can we extend this conjecture to when G is not k-connected?
Naive Conjecture
Let G be a graph with maximal local edge connectivity $k, k \geq 3$.
Then G is k-choosable if and only if it is k-colourable.

List Colouring for Maximal Local Edge Connectivity

This graph is 3 -colourable as shown previously but not ϕ-colourable for the 3 -list assignment, ϕ, pictured above.

Restricted Vertices

When a graph G is ϕ-colourable, we say a vertex, v, is ϕ-restricted if there is a colour $c \in \phi(v)$ such that in no ϕ-colouring v is assigned c.

Unrestricted Graphs

We say a graph, G, is ϕ-unrestricted if it is ϕ-colourable and no vertex of G is ϕ-restricted. We say G is k-unresticted if G is ϕ-unrestricted for any k-list assignment, ϕ.

Finding Restricted Vertices

Theorem (B and Brettell, 2023+)
Let G be a k-connected graph with maximal local edge connectivity k. If G is not a complete graph and G is not an odd wheel then G is k-unrestricted.

$\mathrm{k}=3$

In the case when $k=3$ things break down quite nicely.
If G is not 2-connected then we decompose into blocks.
If G is 3 -connected then we are done by the last lemma.
It remains to deal with graphs that are 2-connected but not 3-connected.

Graphs that are 2-connected but not 3-connected

Helix

Helix join

Graphs that are 2-connected but not 3-connected

Lemma (B and Brettell, 2023+)
Let G be a graph that is 2-connected but not 3-connected. If G has maximal local edge connectivity 3 then G admits a helix join.

Graphs that are 2-connected but not 3-connected

Let G be a helix join of graphs, G_{1} and G_{2}.
Lemma (B and Brettell, 2023+)
If G_{1} and G_{2} are 3-unrestricted then G is 3-unrestricted.
Lemma (B and Brettell, 2023+)
If G_{1} and G_{2} are 3-restricted on certain vertices involved in the helix join then G is 3-restricted.

Where to Next?

We wish to describe precisely the cases where a graph has maximal local edge connectivity 3 and is not 3 -choosable.
Conjecture
Let G be a helix join of graphs, G_{1} and G_{2}. If G_{1} is 3 -unrestricted and G_{2} is critically 3-restricted then G is 3-unrestricted.

Then work out which vertices are restricted in our restricted class of graphs. Then solve the problem for $k=3$.

Where to Next?

We wish to describe precisely the cases where a graph has maximal local edge connectivity 3 and is not 3 -choosable.
Conjecture
Let G be a helix join of graphs, G_{1} and G_{2}. If G_{1} is 3 -unrestricted and G_{2} is critically 3-restricted then G is 3-unrestricted.

Then work out which vertices are restricted in our restricted class of graphs. Then solve the problem for $k=3$.

Thanks for your attention.

