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Introduction

A width parameter associates a measure of “width” to a graph.

Width parameters of interest here:
treewidth, clique-width, mim-width, sim-width, and
tree-independence number

What are these parameters? Why are they of interest?
How do they relate to each other?



Comparing width parameters

A class of graphs G has bounded p-width if there exists a
constant c such that p(G) ≤ c for all G ∈ G.

For parameters p and q, say p is less restrictive than q if there
exists a function f such that p(G) ≤ f (q(G)) for every graph G .

Then “G has bounded q-width” ⇒ “G has bounded p-width”.

treewidth is the most restrictive parameter we’ll consider

For parameters p and q, say p is equivalent to q if p is less
restrictive than q, and q is less restrictive than p.

We can also compare parameters on subclasses.
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Treewidth

treewidth formalises a notion of how “tree-like” a graph is.

For a graph G , a tree decomposition of G is a tree T and a
collection of bags (Bt)t∈V (T ) where each bag Bt is a subset of
V (G) such that:

1 each vertex of G is in some bag
2 every edge uv of G has both u and v in some bag
3 for each vertex v of G , the bags containing v form a

connected subtree of T
The width of a tree decomposition is maxt∈V (T ) |Bt | − 1.
The treewidth of a graph G , denote tw(G), is the minimum width
among all tree decompositions of G .



Treewidth: an example
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tw(G) ≤ 2
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Algorithms parameterised by treewidth
Many graph problems that are NP-hard in general are
polynomial-time solvable for graphs with bounded treewidth.

Theorem (Courcelle, 1990)

Any graph problem expressible in MSO2 logic of graphs is FPT
parameterised by treewidth

(there is an f (w) · O(n)-time algorithm).

e.g. Independent Set, k-colouring, . . .



Treewidth examples

a tree has treewidth 1,

K5
whereas a complete graph Kn+1 has treewidth n

4 × 4 grid
and an n × n grid has treewidth n

clique-width gives a measure of how “uniformly sparse or dense” a
graph is.
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Clique-width

a cograph (“complement-reducible graph”) can be constructed
from K1’s by disjoint unions and joins.

the clique-width of a graph G is the minimum number of labels
required to build G by

1 creating a new vertex v with label i
2 disjoint union of two labelled graphs
3 joining by an edge every vertex labeled i to every vertex

labeled j
4 relabelling i to j

Complementation: cw(G) ≤ 2cw(G)



Clique-width examples
complete graphs have clique-width 1,

cographs have clique-width at most 2,

an n × n grid has clique-width n + 1



Algorithms parameterised by clique-width

Theorem (Courcelle, Makowsky, and Rotics, 2000)

Any problem expressible in MSO1 logic of graphs is FPT
parameterised by clique-width

(there is an f (w) · O(n3)-time algorithm).

in MSO1, can’t quantify over edge sets
e.g. Hamiltonian Cycle in MSO2 but not MSO1

More general class of graphs, less general family of problems



Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.
[Courcelle and Olariu 2000]

cw(G) ≤ 3 · 2tw(G)−1 [Corneil and Rotics 2005]

However,

Theorem (Gurski and Wanke, 2000)

For every t ≥ 2, when restricted to the class of graphs with no
Kt,t-subgraph, clique-width is equivalent to treewidth.

Theorem (Gurski and Wanke, 2007)

A class of graph G has bounded treewidth if and only if the class
L(G) of line graphs of graphs in G has bounded clique-width.



Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.
[Courcelle and Olariu 2000]

cw(G) ≤ 3 · 2tw(G)−1 [Corneil and Rotics 2005]

However,

Theorem (Gurski and Wanke, 2000)

For every t ≥ 2, when restricted to the class of graphs with no
Kt,t-subgraph, clique-width is equivalent to treewidth.

Theorem (Gurski and Wanke, 2007)

A class of graph G has bounded treewidth if and only if the class
L(G) of line graphs of graphs in G has bounded clique-width.



Branch decompositions and f -width
A branch decomposition (T , δ) of G is a subcubic tree T , with a
bijection between the leaves of T and V (G).

T
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Bipartition (Ve , Ve) of V (G) displayed by each edge e of T
Define a symmetric width function f : 2V (G) → Z

f -width of (T , δ) is max width of a set displayed by an edge of T
f -width of G is the minimum over all branch decompositions
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Width functions of branch decompositions
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Comparing more width parameters

mm-width is equivalent to treewidth:
mmw(G) ≤ tw(G) + 1 ≤ 3mmw(G)

[Vatshelle 2012; Jeong et al. 2018]

mim-width is less restrictive than clique-width
mimw(G) ≤ cw(G)

sim-width is less restrictive than mim-width
simw(G) ≤ mimw(G) [Kang, Kwon, Strømme, Telle, 2017]



Comparing width parameters

bounded treewidth /
mm-width

bounded clique-width

bounded mim-width

bounded sim-width



Why mim-width?
interval graphs, permutation graphs have mim-width 1

There is an XP algorithm (runs in f (w)ng(w) time) for a wide
range of “locally checkable” problems (IS, k-colouring, . . . )

[Bui-Xuan, Telle, Vatshelle, 2013]

Generalised to other problems (FVS, list k-colouring, . . . )

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised
by mim-width, given a branch decomposition

(there is an nf (w)-time algorithm).
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outside any other part of formula

Distance neighbourhood logic (DN): extends existential MSO1
with predicates for querying about neighbourhoods of sets
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semitotal dominating set: a dominating set S ⊆ V (G) such that
for each v ∈ S there is distinct u ∈ S such that d(u, v) ≤ 2.
∃X : |X | ≤ m ∧ X ∪ N1

1 (X ) = ∅ ∧ X ⊆ N2
1 (X )
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Obtaining decompositions
treewidth/clique-width meta theorems don’t require decomposition
as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree
decomposition of width ≤ k or determines tw(G) > k.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an O(ng(k) log n)-time
algorithm that finds a branch decomposition of f -width 3k + 1 or
determines f -width is more than k.



Obtaining decompositions
treewidth/clique-width meta theorems don’t require decomposition
as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree
decomposition of width ≤ k or determines tw(G) > k.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an O(ng(k) log n)-time
algorithm that finds a branch decomposition of f -width 3k + 1 or
determines f -width is more than k.

mim-width function is not submodular (and NP-hard to compute)

Open problem: is there an XP (approximation) algorithm for
computing a branch decomposition of mim-width at most k?



Why sim-width?

Bounded for chordal graphs.

Of theoretical interest, but few algorithmic applications.

List k-colouring is polynomial-time solvable for graphs with
bounded sim-width, given a decomposition

[Munaro and Yang 2023]

simw(G) ≤ mimw(G)

simw(G/e) ≤ simw(G).

For Kt-free graphs, there exists f s.t. mimw(G) ≤ f (simw(G)).
[Kang, Kwon, Strømme, Telle, 2017]



Comparing width parameters, revisited

bounded treewidth /
mm-width

bounded clique-width

bounded mim-width

bounded sim-width

Theorem (B., Munaro, Paulusma, Yang, 2023+)

For any t, treewidth, clique-width, mim-width, and sim-width are
equivalent when restricted to Kt,t-subgraph free graphs.
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Proof of equivalence for Kt,t-subgraph-free graphs

For Kt,t-subgraph free: tw(G) ≤ 3(n − 1) · cw(G) − 1.
[Gurski and Wanke 2000]

Lemma
Given t and p, there exists N(t, p) such that every bipartite
graph with a matching of size N(t, p) and having no
Kt,t-subgraph contains an induced matching of size p.

For Kt,t-subgraph-free: mmw(G) < N(t, mimw(G)).

Another Ramsey-theoretic argument for Kt,t-subgraph-free
graphs gives mimw(G) ≤ f (simw(G)).
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Line graphs
Theorem (B., Munaro, Paulusma, Yang, 2023+)

Let G be a class of graphs and let L(G) be the class of line graphs
of graphs in G. The following are equivalent:

1 The class G has bounded treewidth.
2 The class L(G) has bounded clique-width.
3 The class L(G) has bounded mim-width.
4 The class L(G) has bounded sim-width.

cw(L(G)) − 3
2 < tw(G) < 4cw(L(G))

[Gurski and Wanke 2007]

simw(G) ≤ mimw(G) ≤ cw(G)

So suffices to prove tw(G) ≤ f (simw(L(G))) for some function f .
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Proof of equivalence for line graphs

simw(G − v) ≤ simw(G)
simw(G/e) ≤ simw(G) [Kang et al. 2017]

Lemma (B., Munaro, Paulusma, Yang, 2023+)

simw(L(G/e)) ≤ simw(L(G))

Lemma
tw(G) ≤ f (simw(L(G))) for some function f .

Proof.
if tw(G) large, then G has a large grid minor H

simw(L(G)) ≥ simw(L(H))

since L(H) is K6,6-subgraph-free, there are g and h s.t.
g(simw(L(H))) ≥ tw(L(H)) and h(tw(L(H))) ≥ tw(G).
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Tree-independence number

What if cliques are the only obstruction to having small treewidth?

Independence number of a tree decomposition: the maximum size
of an independent set induced by a bag

Tree-independence number of a graph G , denoted tree-α(G) : the
minimum independence number over all tree decompositions.

simw(G) ≤ tree-α(G) [Munaro and Yang 2023]

tree-α(G) ≤ tw(G) + 1 [Dallard, Milanič, Štorgel, 2024]



Why tree-independence number?

Various algorithmic results for packing problems (IS, FVS, . . . )

Theorem (Dallard, Fomin, Golovach, Korhonen, Milanič 2022+)

There is an approximation algorithm for computing a tree
decomposition of bounded independence number.

Conjecture (Dallard, Milanič, Štorgel 2022+)

A hereditary class has bounded tree-independence number iff there
exists a function f such that tw(G) ≤ f (ω(G)).



Tree-independence number: an example
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Comparing Kt,t-subgraph-free graphs
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Comparing line graphs
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Comparing Kt,t-free graphs

Kt,t-free graphs

Kt,t-subgraph-free graphs line graphs

Kt,t-free: no induced subgraph isomorphic to Kt,t .



Comparing Kt,t-free graphs

sim-width

mim-width

clique-width

treewidth

tree-independence number

?

twin-width

Theorem (B., Munaro, Paulusma, Yang, 2023+)

Given a Ks,t-free graph G and a decomposition of mim-width w,
we can construct a tree decomposition of G with independence
number at most 6(2t+w−1 + sw t+1) in O(nsw t+4)-time.



Comparing Kt,t-free graphs

sim-width

mim-width

clique-width

treewidth

tree-independence number
?

twin-width

Open problem: is tree-independence number less restrictive than
sim-width for Kt,t-free graphs?

Yes. [Abrishami, Briański, Czyżewska, McCarty, Milanič, and Rza̧żewski]
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Open problems

Is there an XP algorithm, parameterized by k, that either decides
that mimw(G) > k (or simw(G) > k), or outputs a decomposition
of G of mim-width (or sim-width) at most f (k)?

tw(G) + 1
4 ≤ cw(L(G)) ≤ 2tw(G) + 2

[Gurski and Wanke 2007]⌊bw(G)
25

⌋
≤ mimw(L(G)) ≤ bw(G)

[B., Munaro, Paulusma, Yang, 2023+]

Open: similar bounds for sim-width? tree-independence number?
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Open problems

If G is d-degenerate with a matching of size µ, then G has an
induced matching of size at least µ/(4d − 1).

Can we do better? (Can’t do better than µ/2d .)

Find an asymptotically optimal upper bound on tree-independence
number in terms of clique-width and the largest induced Kt,t .
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Thanks for your attention.
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