A comparison of graph width parameters

Nick Brettell

Victoria University of Wellington, NZ
Joint work with Andrea Munaro,
Daniel Paulusma, and Shizhou Yang

45ACC
12 December 2023

Introduction

A width parameter associates a measure of "width" to a graph.

Width parameters of interest here:

- treewidth, clique-width, mim-width, sim-width, and tree-independence number
- What are these parameters? Why are they of interest?
- How do they relate to each other?

Comparing width parameters

A class of graphs \mathcal{G} has bounded p-width if there exists a constant c such that $p(G) \leq c$ for all $G \in \mathcal{G}$.

For parameters p and q, say p is less restrictive than q if there exists a function f such that $p(G) \leq f(q(G))$ for every graph G.

Then " \mathcal{G} has bounded q-width" \Rightarrow " \mathcal{G} has bounded p-width".
treewidth is the most restrictive parameter we'll consider

For parameters p and q, say p is equivalent to q if p is less restrictive than q, and q is less restrictive than p.

Comparing width parameters

A class of graphs \mathcal{G} has bounded p-width if there exists a constant c such that $p(G) \leq c$ for all $G \in \mathcal{G}$.

For parameters p and q, say p is less restrictive than q if there exists a function f such that $p(G) \leq f(q(G))$ for every graph G.

Then " \mathcal{G} has bounded q-width" \Rightarrow " \mathcal{G} has bounded p-width".
treewidth is the most restrictive parameter we'll consider

For parameters p and q, say p is equivalent to q if p is less restrictive than q, and q is less restrictive than p.

We can also compare parameters on subclasses.

Treewidth

treewidth formalises a notion of how "tree-like" a graph is.

For a graph G, a tree decomposition of G is a tree T and a collection of bags $\left(B_{t}\right)_{t \in V(T)}$ where each bag B_{t} is a subset of $V(G)$ such that:
1 each vertex of G is in some bag
2 every edge $u v$ of G has both u and v in some bag
3 for each vertex v of G, the bags containing v form a connected subtree of T
The width of a tree decomposition is $\max _{t \in V(T)}\left|B_{t}\right|-1$. The treewidth of a graph G, denote $\operatorname{tw}(G)$, is the minimum width among all tree decompositions of G.

Treewidth: an example

This decomposition has width 2.

$$
\operatorname{tw}(G) \leq 2
$$

Treewidth: an example

This decomposition has width 2.

$$
\operatorname{tw}(G)=2
$$

Algorithms parameterised by treewidth

Many graph problems that are NP-hard in general are polynomial-time solvable for graphs with bounded treewidth.

Theorem (Courcelle, 1990)

Any graph problem expressible in MSO_{2} logic of graphs is FPT parameterised by treewidth
(there is an $f(w) \cdot O(n)$-time algorithm).
e.g. Independent Set, k-colouring, ...

Treewidth examples

a tree has treewidth 1 ,

whereas a complete graph K_{n+1} has treewidth n

4×4 grid and an $n \times n$ grid has treewidth n

Treewidth examples

a tree has treewidth 1 ,

whereas a complete graph K_{n+1} has treewidth n
Bounded treewidth restricts us to relatively sparse graphs.

High treewidth graphs may not have high complexity.

Treewidth examples

a tree has treewidth 1 ,

whereas a complete graph K_{n+1} has treewidth n
Bounded treewidth restricts us to relatively sparse graphs.

High treewidth graphs may not have high complexity.
clique-width gives a measure of how "uniformly sparse or dense" a graph is.

Clique-width

a cograph ("complement-reducible graph") can be constructed from K_{1} 's by disjoint unions and joins.
the clique-width of a graph G is the minimum number of labels required to build G by
1 creating a new vertex v with label i
2 disjoint union of two labelled graphs
3 joining by an edge every vertex labeled i to every vertex labeled j
4 relabelling i to j
Complementation: $\mathrm{cw}(\bar{G}) \leq 2 \mathrm{cw}(G)$

Clique-width examples

complete graphs have clique-width 1 ,

cographs have clique-width at most 2 ,

an $n \times n$ grid has clique-width $n+1$

Algorithms parameterised by clique-width

Theorem (Courcelle, Makowsky, and Rotics, 2000)
Any problem expressible in MSO_{1} logic of graphs is FPT parameterised by clique-width
(there is an $f(w) \cdot O\left(n^{3}\right)$-time algorithm).
in MSO_{1}, can't quantify over edge sets
e.g. Hamiltonian Cycle in MSO_{2} but not MSO_{1}

More general class of graphs, less general family of problems

Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.
[Courcelle and Olariu 2000]
$\operatorname{cw}(G) \leq 3 \cdot 2^{\operatorname{tw}(G)-1}$ [Corneil and Rotics 2005]

However,
Theorem (Gurski and Wanke, 2000)
For every $t \geq 2$, when restricted to the class of graphs with no $K_{t, t}$-subgraph, clique-width is equivalent to treewidth.

Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.
[Courcelle and Olariu 2000]
$\mathrm{cw}(G) \leq 3 \cdot 2^{\mathrm{tw}(G)-1}$
[Corneil and Rotics 2005]
However,
Theorem (Gurski and Wanke, 2000)
For every $t \geq 2$, when restricted to the class of graphs with no $K_{t, t}$-subgraph, clique-width is equivalent to treewidth.

Theorem (Gurski and Wanke, 2007)

A class of graph \mathcal{G} has bounded treewidth if and only if the class $L(\mathcal{G})$ of line graphs of graphs in \mathcal{G} has bounded clique-width.

Branch decompositions and f-width

A branch decomposition (T, δ) of G is a subcubic tree T, with a bijection between the leaves of T and $V(G)$.

Branch decompositions and f-width

A branch decomposition (T, δ) of G is a subcubic tree T, with a bijection between the leaves of T and $V(G)$.

Branch decompositions and f-width

A branch decomposition (T, δ) of G is a subcubic tree T, with a bijection between the leaves of T and $V(G)$.

Branch decompositions and f-width

A branch decomposition (T, δ) of G is a subcubic tree T, with a bijection between the leaves of T and $V(G)$.

Bipartition $\left(V_{e}, \overline{V_{e}}\right)$ of $V(G)$ displayed by each edge e of T
Define a symmetric width function $f: 2^{V(G)} \rightarrow \mathbb{Z}$

Branch decompositions and f-width

A branch decomposition (T, δ) of G is a subcubic tree T, with a bijection between the leaves of T and $V(G)$.

Bipartition $\left(V_{e}, \overline{V_{e}}\right)$ of $V(G)$ displayed by each edge e of T
Define a symmetric width function $f: 2^{V(G)} \rightarrow \mathbb{Z}$
f-width of (T, δ) is max width of a set displayed by an edge of T
f-width of G is the minimum over all branch decompositions

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

G
f measures the "complexity" of the cut.

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

$G\left[V_{e}, \overline{V_{e}}\right]$ bipartite
f measures the "complexity" of the cut.

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

mm-width: f is the maximum size of a matching in $G\left[V_{e}, \overline{V_{e}}\right]$

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

mm-width: f is the maximum size of a matching in $G\left[V_{e}, \overline{V_{e}}\right]$ $f\left(V_{e}\right)=4$.

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

mim-width: f is the max size of an induced matching in $G\left[V_{e}, \overline{V_{e}}\right]$

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

mim-width: f is the max size of an induced matching in $G\left[V_{e}, \overline{V_{e}}\right]$ $f\left(V_{e}\right)=3$.

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

sim-width: f is the maximum size of an induced matching in G (consisting of edges from $G\left[V_{e}, \overline{V_{e}}\right]$)

Width functions of branch decompositions

Consider a branch decomposition (T, δ) on $V(G)$.
Each edge e of T corresponds to a cut $\left(V_{e}, \overline{V_{e}}\right)$

sim-width: f is the maximum size of an induced matching in G (consisting of edges from $G\left[V_{e}, \overline{V_{e}}\right]$) $f\left(V_{e}\right)=2$.

Comparing more width parameters

mm-width is equivalent to treewidth:
$\operatorname{mmw}(G) \leq \operatorname{tw}(G)+1 \leq 3 \operatorname{mmw}(G)$
[Vatshelle 2012; Jeong et al. 2018]
mim-width is less restrictive than clique-width
$\operatorname{mimw}(G) \leq \operatorname{cw}(G)$
sim-width is less restrictive than mim-width
$\operatorname{simw}(G) \leq \operatorname{mimw}(G)$
[Kang, Kwon, Strømme, Telle, 2017]

Comparing width parameters

Why mim-width?

interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in $f(w) n^{g(w)}$ time) for a wide range of "locally checkable" problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]
Generalised to other problems (FVS, List k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised by mim-width, given a branch decomposition
(there is an $n^{f(w)}$-time algorithm).

Why mim-width?

interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in $f(w) n^{g(w)}$ time) for a wide range of "locally checkable" problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]
Generalised to other problems (FVS, List k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised by mim-width, given a branch decomposition
(there is an $n^{f(w)}$-time algorithm).
Existential MSO_{1} : quantifiers over sets must be existential and outside any other part of formula

Distance neighbourhood logic (DN): extends existential MSO_{1} with predicates for querying about neighbourhoods of sets

Why mim-width?

interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in $f(w) n^{g(w)}$ time) for a wide range of "locally checkable" problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]
Generalised to other problems (FVS, List k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised by mim-width, given a branch decomposition
(there is an $n^{f(w)}$-time algorithm).
semitotal dominating set: a dominating set $S \subseteq V(G)$ such that for each $v \in S$ there is distinct $u \in S$ such that $d(u, v) \leq 2$.
$\exists X:|X| \leq m \wedge X \cup N_{1}^{1}(X)=\emptyset \wedge X \subseteq N_{1}^{2}(X)$

Why mim-width?

interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in $f(w) n^{g(w)}$ time) for a wide range of "locally checkable" problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]
Generalised to other problems (FVS, List k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised by mim-width, given a branch decomposition
(there is an $n^{f(w)}$-time algorithm).

Obtaining decompositions

treewidth/clique-width meta theorems don't require decomposition as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree decomposition of width $\leq k$ or determines $\operatorname{tw}(G)>k$.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an $O\left(n^{g(k)} \log n\right)$-time algorithm that finds a branch decomposition of f-width $3 k+1$ or determines f-width is more than k.

Obtaining decompositions

treewidth/clique-width meta theorems don't require decomposition as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree decomposition of width $\leq k$ or determines $\operatorname{tw}(G)>k$.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an $O\left(n^{g(k)} \log n\right)$-time algorithm that finds a branch decomposition of f-width $3 k+1$ or determines f-width is more than k.
mim-width function is not submodular (and NP-hard to compute)

Open problem: is there an XP (approximation) algorithm for computing a branch decomposition of mim-width at most k ?

Why sim-width?

Bounded for chordal graphs.
Of theoretical interest, but few algorithmic applications.
LIST k-COLOURING is polynomial-time solvable for graphs with bounded sim-width, given a decomposition

> [Munaro and Yang 2023]
$\operatorname{simw}(G) \leq \operatorname{mimw}(G)$
$\operatorname{simw}(G / e) \leq \operatorname{simw}(G)$.
For K_{t}-free graphs, there exists f s.t. $\operatorname{mimw}(G) \leq f(\operatorname{simw}(G))$. [Kang, Kwon, Strømme, Telle, 2017]

Comparing width parameters, revisited

Comparing width parameters, revisited

sim-width
\downarrow
mim-width \downarrow
clique-width
\downarrow
treewidth

Comparing width parameters, revisited

sim-width
\downarrow
mim-width
\downarrow
clique-width
\downarrow
treewidth

Theorem (B., Munaro, Paulusma, Yang, 2023+)

For any t, treewidth, clique-width, mim-width, and sim-width are equivalent when restricted to $K_{t, t}$-subgraph free graphs.

Comparing width parameters, revisited

For $K_{t, t}$-subgraph-free graphs:
sim-width
\downarrow
mim-width
\downarrow
clique-width
\downarrow
treewidth

[^0]
Proof of equivalence for $K_{t, t}$-subgraph-free graphs

For $K_{t, t}$-subgraph free: $\operatorname{tw}(G) \leq 3(n-1) \cdot \operatorname{cw}(G)-1$.
[Gurski and Wanke 2000]

Proof of equivalence for $K_{t, t}$-subgraph-free graphs

For $K_{t, t}$-subgraph free: $\operatorname{tw}(G) \leq 3(n-1) \cdot \operatorname{cw}(G)-1$.

Given t and p, there exists $N(t, p)$ such that every bipartite mimw graph with a matching of size $N(t, p)$ and having no $K_{t, t}$-subgraph contains an induced matching of size p.

For $K_{t, t}$-subgraph-free: $\operatorname{mmw}(G)<N(t, \operatorname{mimw}(G))$.

Proof of equivalence for $K_{t, t}$-subgraph-free graphs

For $K_{t, t}$-subgraph free: $\operatorname{tw}(G) \leq 3(n-1) \cdot \operatorname{cw}(G)-1$.
[Gurski and Wanke 2000]

Lemma

Given t and p, there exists $N(t, p)$ such that every bipartite graph with a matching of size $N(t, p)$ and having no $K_{t, t}$-subgraph contains an induced matching of size p.

For $K_{t, t}$-subgraph-free: $\operatorname{mmw}(G)<N(t, \operatorname{mimw}(G))$.
Another Ramsey-theoretic argument for $K_{t, t}$-subgraph-free
simw
mimw
 graphs gives $\operatorname{mimw}(G) \leq f(\operatorname{simw}(G))$.

Line graphs

Theorem (B., Munaro, Paulusma, Yang, 2023+)

Let \mathcal{G} be a class of graphs and let $L(\mathcal{G})$ be the class of line graphs of graphs in \mathcal{G}. The following are equivalent:
1 The class \mathcal{G} has bounded treewidth.
2 The class $L(\mathcal{G})$ has bounded clique-width.
3 The class $L(\mathcal{G})$ has bounded mim-width.
4 The class $L(\mathcal{G})$ has bounded sim-width.

Line graphs

Theorem (B., Munaro, Paulusma, Yang, 2023+)

Let \mathcal{G} be a class of graphs and let $L(\mathcal{G})$ be the class of line graphs of graphs in \mathcal{G}. The following are equivalent:
1 The class \mathcal{G} has bounded treewidth.
2 The class $L(\mathcal{G})$ has bounded clique-width.
3 The class $L(\mathcal{G})$ has bounded mim-width.
4 The class $L(\mathcal{G})$ has bounded sim-width.

$$
\frac{\mathrm{cw}(L(G))-3}{2}<\operatorname{tw}(G)<4 \mathrm{cw}(L(G))
$$

[Gurski and Wanke 2007]

$$
\operatorname{simw}(G) \leq \operatorname{mimw}(G) \leq \operatorname{cw}(G)
$$

So suffices to prove $\operatorname{tw}(G) \leq f(\operatorname{simw}(L(G)))$ for some function f.

Proof of equivalence for line graphs

$$
\begin{aligned}
& \operatorname{simw}(G-v) \leq \operatorname{simw}(G) \\
& \operatorname{simw}(G / e) \leq \operatorname{simw}(G)
\end{aligned}
$$

Lemma (B., Munaro, Paulusma, Yang, 2023+) $\operatorname{simw}(L(G / e)) \leq \operatorname{simw}(L(G))$

Proof of equivalence for line graphs

$$
\begin{aligned}
& \operatorname{simw}(G-v) \leq \operatorname{simw}(G) \\
& \operatorname{simw}(G / e) \leq \operatorname{simw}(G)
\end{aligned}
$$

Lemma (B., Munaro, Paulusma, Yang, 2023+)

$\operatorname{simw}(L(G / e)) \leq \operatorname{simw}(L(G))$

Lemma

$\operatorname{tw}(G) \leq f(\operatorname{simw}(L(G)))$ for some function f.
Proof.
if $\operatorname{tw}(G)$ large, then G has a large grid minor H
$\operatorname{simw}(L(G)) \geq \operatorname{simw}(L(H))$
since $L(H)$ is $K_{6,6}$-subgraph-free, there are g and h s.t. $g(\operatorname{simw}(L(H))) \geq \operatorname{tw}(L(H))$ and $h(\operatorname{tw}(L(H))) \geq \operatorname{tw}(G)$.

Tree-independence number

What if cliques are the only obstruction to having small treewidth?
Independence number of a tree decomposition: the maximum size of an independent set induced by a bag

Tree-independence number of a graph G, denoted tree- $\alpha(G)$: the minimum independence number over all tree decompositions.

$$
\begin{aligned}
& \operatorname{simw}(G) \leq \operatorname{tree}-\alpha(G) \\
& \operatorname{tree}-\alpha(G) \leq \operatorname{tw}(G)+1
\end{aligned}
$$

[Munaro and Yang 2023]
[Dallard, Milanič, Štorgel, 2024]

Why tree-independence number?

Various algorithmic results for packing problems (IS, FVS, ...)

Theorem (Dallard, Fomin, Golovach, Korhonen, Milanič 2022+)

There is an approximation algorithm for computing a tree decomposition of bounded independence number.

Conjecture (Dallard, Milanič, Štorgel 2022+)

A hereditary class has bounded tree-independence number iff there exists a function f such that $\operatorname{tw}(G) \leq f(\omega(G))$.

Tree-independence number: an example

This decomposition has independence number 1 .

$$
\text { tree- } \alpha(G) \leq 1
$$

Tree-independence number: an example

This decomposition has independence number 1.

$$
\operatorname{tree}-\alpha(G)=1
$$

Comparing the class of all graphs

sim-width
\downarrow

mim-width

$$
\downarrow
$$

clique-width
\square
treewidth

Comparing the class of all graphs

sim-width

mim-width
\downarrow tree-independence number
clique-width

treewidth

Comparing the class of all graphs

treewidth

Comparing $K_{t, t}$-subgraph-free graphs

twin-width
\downarrow tree-independence number
clique-width

treewidth

Comparing line graphs

Comparing $K_{t, t}-$ free graphs

$K_{t, t^{-}}$free: no induced subgraph isomorphic to $K_{t, t}$.

Comparing $K_{t, t}-$ free graphs

Theorem (B., Munaro, Paulusma, Yang, 2023+)
Given a $K_{s, t}-$ free graph G and a decomposition of mim-width w, we can construct a tree decomposition of G with independence number at most $6\left(2^{t+w-1}+s w^{t+1}\right)$ in $O\left(n^{s w^{t}+4}\right)$-time.

Comparing $K_{t, t^{-}}$free graphs

Open problem: is tree-independence number less restrictive than sim-width for $K_{t, t}$-free graphs?

Comparing $K_{t, t^{-}}$free graphs

Open problem: is tree-independence number less restrictive than sim-width for $K_{t, t}$-free graphs?

Yes. [Abrishami, Briański, Czyżewska, McCarty, Milanič, and Rzạżewski]

Open problems

Is there an XP algorithm, parameterized by k, that either decides that $\operatorname{mimw}(G)>k($ or $\operatorname{simw}(G)>k)$, or outputs a decomposition of G of mim-width (or sim-width) at most $f(k)$?

Open problems

Is there an XP algorithm, parameterized by k, that either decides that $\operatorname{mimw}(G)>k($ or $\operatorname{simw}(G)>k)$, or outputs a decomposition of G of mim-width (or sim-width) at most $f(k)$?

$$
\frac{\operatorname{tw}(G)+1}{4} \leq \operatorname{cw}(L(G)) \leq 2 \operatorname{tw}(G)+2
$$

[Gurski and Wanke 2007]

$$
\begin{aligned}
&\left\lfloor\frac{\operatorname{bw}(G)}{25}\right\rfloor \leq \operatorname{mimw}(L(G)) \leq \operatorname{bw}(G) \\
& {[\text { B., Munaro, Paulusma, Yang, 2023+] }}
\end{aligned}
$$

Open: similar bounds for sim-width? tree-independence number?

Open problems

If G is d-degenerate with a matching of size μ, then G has an induced matching of size at least $\mu /(4 d-1)$.

Can we do better? (Can't do better than $\mu / 2 d$.)

Open problems

If G is d-degenerate with a matching of size μ, then G has an induced matching of size at least $\mu /(4 d-1)$.

Can we do better? (Can't do better than $\mu / 2 d$.)

Find an asymptotically optimal upper bound on tree-independence number in terms of clique-width and the largest induced $K_{t, t}$.

Summary

All graphs:

Line graphs:

$K_{t, t}$-subgraph free:

$K_{t, t^{-}}$free:

Summary

All graphs:

Line graphs:

$K_{t, t}$-subgraph free:

$K_{t, t^{-}}$free:

Thanks for your attention.

[^0]: Theorem (B., Munaro, Paulusma, Yang, 2023+)
 For any t, treewidth, clique-width, mim-width, and sim-width are equivalent when restricted to $K_{t, t}$-subgraph free graphs.

