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Introduction

A width parameter associates a measure of "width” to a graph.

Width parameters of interest here:

m treewidth, clique-width, mim-width, sim-width, and
tree-independence number

m What are these parameters? Why are they of interest?

m How do they relate to each other?



Comparing width parameters

A class of graphs G has bounded p-width if there exists a
constant ¢ such that p(G) < c for all G € G.

For parameters p and g, say p is less restrictive than g if there
exists a function f such that p(G) < f(q(G)) for every graph G.

Then “G has bounded g-width” = “G has bounded p-width".

treewidth is the most restrictive parameter we'll consider

For parameters p and g, say p is equivalent to q if p is less
restrictive than g, and g is less restrictive than p.
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A class of graphs G has bounded p-width if there exists a
constant ¢ such that p(G) < c for all G € G.

For parameters p and g, say p is less restrictive than g if there
exists a function f such that p(G) < f(q(G)) for every graph G.

Then “G has bounded g-width” = “G has bounded p-width".

treewidth is the most restrictive parameter we'll consider

For parameters p and g, say p is equivalent to q if p is less
restrictive than g, and g is less restrictive than p.

We can also compare parameters on subclasses.



Treewidth

treewidth formalises a notion of how “tree-like” a graph is.

For a graph G, a tree decomposition of G is a tree T and a
collection of bags (Bt)teV(T) where each bag B; is a subset of
V(G) such that:
each vertex of G is in some bag
every edge uv of G has both u and v in some bag
for each vertex v of G, the bags containing v form a
connected subtree of T

The width of a tree decomposition is max.cy Ty |B:| — 1.
The treewidth of a graph G, denote tw(G), is the minimum width
among all tree decompositions of G.



Treewidth: an example

This decomposition has width 2.

tw(G) <2

@



Treewidth: an example

This decomposition has width 2.
tw(G) =2

@



Algorithms parameterised by treewidth

Many graph problems that are NP-hard in general are
polynomial-time solvable for graphs with bounded treewidth.

Theorem (Courcelle, 1990)

Any graph problem expressible in MSO; logic of graphs is FPT
parameterised by treewidth
(there is an f(w) - O(n)-time algorithm).

e.g. INDEPENDENT SET, k-COLOURING, ...



Treewidth examples

a tree has treewidth 1,

Ks
whereas a complete graph K1 has treewidth n

4 x 4 grid
and an n x n grid has treewidth n
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Bounded treewidth restricts us to relatively sparse graphs.

High treewidth graphs may not have high complexity.



Treewidth examples

a tree has treewidth 1,

Ks
whereas a complete graph K1 has treewidth n

Bounded treewidth restricts us to relatively sparse graphs.

High treewidth graphs may not have high complexity.

clique-width gives a measure of how “uniformly sparse or dense” a
graph is.



Clique-width

a cograph (“complement-reducible graph™) can be constructed
from Ki's by disjoint unions and joins.

the clique-width of a graph G is the minimum number of labels
required to build G by

creating a new vertex v with label i
disjoint union of two labelled graphs

joining by an edge every vertex labeled i to every vertex
labeled j

relabelling i to j

Complementation: cw(G) < 2cw(G)



Clique-width examples
complete graphs have clique-width 1,

cographs have clique-width at most 2,

an n x n grid has clique-width n+ 1



Algorithms parameterised by clique-width

Theorem (Courcelle, Makowsky, and Rotics, 2000)

Any problem expressible in MSO; logic of graphs is FPT
parameterised by clique-width
(there is an f(w) - O(n®)-time algorithm).

in MSO1, can’t quantify over edge sets
e.g. HAMILTONIAN CYCLE in MSQO> but not MSO;

More general class of graphs, less general family of problems



Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.

[Courcelle and Olariu 2000]
cw(G) < 3- 2tw(6)-1 [Corneil and Rotics 2005]
However,

Theorem (Gurski and Wanke, 2000)

For every t > 2, when restricted to the class of graphs with no
Kt t-subgraph, clique-width is equivalent to treewidth.



Comparing treewidth and clique-width

Clique-width is less restrictive than treewidth.
[Courcelle and Olariu 2000]
cw(G) < 3- 2tw(6)-1 [Corneil and Rotics 2005]

However,
Theorem (Gurski and Wanke, 2000)

For every t > 2, when restricted to the class of graphs with no
Kt t-subgraph, clique-width is equivalent to treewidth.

Theorem (Gurski and Wanke, 2007)

A class of graph G has bounded treewidth if and only if the class
L(G) of line graphs of graphs in G has bounded clique-width.
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A branch decomposition (T,0) of G is a subcubic tree T, with a
bijection between the leaves of T and V/(G).
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Branch decompositions and f-width

A branch decomposition (T,0) of G is a subcubic tree T, with a
bijection between the leaves of T and V/(G).

)
Vo

vr

Vs T

Vi V4

Bipartition (Ve, V) of V(G) displayed by each edge e of T
Define a symmetric width function f : 2Y(¢) - 7Z
f-width of (T,0) is max width of a set displayed by an edge of T

f-width of G is the minimum over all branch decompositions



Width functions of branch decompositions
Consider a branch decomposition (7,6) on V(G).
Each edge e of T corresponds to a cut (Ve, Ve)

Ve V.

G
f measures the “"complexity” of the cut.



Width functions of branch decompositions
Consider a branch decomposition (7,6) on V(G).
Each edge e of T corresponds to a cut (Ve, Ve)

Ve V.,
G[ Ve, V| bipartite

f measures the “complexity” of the cut.
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Ve V.,
mm-width: f is the maximum size of a matching in G[V., V]
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Width functions of branch decompositions
Consider a branch decomposition (7,6) on V(G).
Each edge e of T corresponds to a cut (Ve, Ve)

Ve V.,
mim-width: f is the max size of an induced matching in G[V, V]
f(Ve) =3.



Width functions of branch decompositions
Consider a branch decomposition (7,6) on V(G).
Each edge e of T corresponds to a cut (Ve, Ve)

Ve V.
sim-width: f is the maximum size of an induced matching in G
(consisting of edges from G[ V., Ve|)



Width functions of branch decompositions
Consider a branch decomposition (7,6) on V(G).
Each edge e of T corresponds to a cut (Ve, Ve)

Ve V.
sim-width: f is the maximum size of an induced matching in G

(consisting of edges from G[ V., Ve|)
f(Ve) =2.



Comparing more width parameters

mm-width is equivalent to treewidth:
mmw(G) < tw(G) + 1 < 3mmw(G)
[Vatshelle 2012; Jeong et al. 2018]

mim-width is less restrictive than clique-width
mimw(G) < cw(G)

sim-width is less restrictive than mim-width
simw(G) < mimw(G) [Kang, Kwon, Strgmme, Telle, 2017]



Comparing width parameters

bounded sim-width

bounded mim-width

bounded clique-width

bounded treewidth /
mm-width



Why mim-width?
interval graphs, permutation graphs have mim-width 1

There is an XP algorithm (runs in f(w)n&") time) for a wide
range of “locally checkable” problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]

Generalised to other problems (FV'S, LIST k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised
by mim-width, given a branch decomposition

(there is an n(W)

-time algorithm).
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interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in f(w)n&") time) for a wide

range of “locally checkable” problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]

Generalised to other problems (FV'S, LIST k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised
by mim-width, given a branch decomposition

(there is an nf(w)

-time algorithm).
Existential MSO1: quantifiers over sets must be existential and
outside any other part of formula

Distance neighbourhood logic (DN): extends existential MSO;
with predicates for querying about neighbourhoods of sets



Why mim-width?
interval graphs, permutation graphs have mim-width 1
There is an XP algorithm (runs in f(w)n&") time) for a wide

range of “locally checkable” problems (IS, k-COLOURING, ...)
[Bui-Xuan, Telle, Vatshelle, 2013]

Generalised to other problems (FV'S, LIST k-COLOURING, ...)

Theorem (Bergougnoux, Drier, and Jaffke, 2023)

Any problem expressible in DN logic of graphs is XP parameterised
by mim-width, given a branch decomposition

(there is an nf(w)

-time algorithm).

semitotal dominating set: a dominating set S C V/(G) such that
for each v € S there is distinct u € S such that d(u, v) < 2.
IX X< mAXUNHX)=0AX C NZ(X)



Why mim-width?
interval graphs, permutation graphs have mim-width 1
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Obtaining decompositions

treewidth /clique-width meta theorems don't require decomposition
as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree
decomposition of width < k or determines tw(G) > k.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an O(n&(¥) log n)-time
algorithm that finds a branch decomposition of f-width 3k + 1 or
determines f-width is more than k.



Obtaining decompositions

treewidth /clique-width meta theorems don't require decomposition
as input

Theorem (Bodlaender 2006)

For fixed k, there is a linear-time algorithm that finds a tree
decomposition of width < k or determines tw(G) > k.

Theorem (Oum and Seymour 2007)

For fixed k, if f is submodular, there is an O(n&(¥) log n)-time
algorithm that finds a branch decomposition of f-width 3k + 1 or
determines f-width is more than k.

mim-width function is not submodular (and NP-hard to compute)

Open problem: is there an XP (approximation) algorithm for
computing a branch decomposition of mim-width at most k?



Why sim-width?

Bounded for chordal graphs.

Of theoretical interest, but few algorithmic applications.

LIST k-COLOURING is polynomial-time solvable for graphs with
bounded sim-width, given a decomposition

[Munaro and Yang 2023]

simw(G) < mimw(G)
simw(G/e) < simw(G).

For Ki-free graphs, there exists f s.t. mimw(G) < f(simw(G)).
[Kang, Kwon, Strgmme, Telle, 2017]



Comparing width parameters, revisited

bounded sim-width

bounded mim-width

bounded clique-width

bounded treewidth /
mm-width
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Comparing width parameters, revisited

sim-width
{
mim-width

clique-width

!

treewidth

Theorem (B., Munaro, Paulusma, Yang, 2023+)

For any t, treewidth, clique-width, mim-width, and sim-width are
equivalent when restricted to K; :-subgraph free graphs.



Comparing width parameters, revisited
For Kt -subgraph-free graphs:

sim-width
?
mim-width

clique-width

!

treewidth

Theorem (B., Munaro, Paulusma, Yang, 2023+)

For any t, treewidth, clique-width, mim-width, and sim-width are
equivalent when restricted to K t-subgraph free graphs.



Proof of equivalence for K; ;-subgraph-free graphs

For K;t-subgraph free: tw(G) < 3(n—1)-cw(G) — 1.
[Gurski and Wanke 2000]

simw

mimw

cw

tw



Proof of equivalence for K; ;-subgraph-free graphs

For K;t-subgraph free: tw(G) < 3(n—1)-cw(G) — 1.
[Gurski and Wanke 2000]

simw
!
Given t and p, there exists N(t, p) such that every bipartite mimw
graph with a matching of size N(t, p) and having no
Kt t-subgraph contains an induced matching of size p. l
cw
For K;t-subgraph-free: mmw(G) < N(t, mimw(G)). J

tw



Proof of equivalence for K; ;-subgraph-free graphs

For K;t-subgraph free: tw(G) < 3(n—1)-cw(G) — 1.
[Gurski and Wanke 2000]

simw
(!
Given t and p, there exists N(t, p) such that every bipartite mimw
graph with a matching of size N(t, p) and having no
Kt t-subgraph contains an induced matching of size p. l
cw
For K;t-subgraph-free: mmw(G) < N(t, mimw(G)). J
Another Ramsey-theoretic argument for K; ;-subgraph-free tw

graphs gives mimw(G) < f(simw(G)).



Line graphs
Theorem (B., Munaro, Paulusma, Yang, 2023+)

Let G be a class of graphs and let L(G) be the class of line graphs
of graphs in G. The following are equivalent:

The class G has bounded treewidth.

A The class L(G) has bounded clique-width.
B The class L(G) has bounded mim-width.
B The class L(G) has bounded sim-width.

N

N B



Line graphs
Theorem (B., Munaro, Paulusma, Yang, 2023+)

Let G be a class of graphs and let L(G) be the class of line graphs
of graphs in G. The following are equivalent:

The class G has bounded treewidth.

A The class L(G) has bounded clique-width.
B The class L(G) has bounded mim-width.
B The class L(G) has bounded sim-width.

N

I

ew(L(G)) — 3

5 < tw(G) < 4ew(L(G))

[Gurski and Wanke 2007]

simw(G) < mimw(G) < cw(G)

So suffices to prove tw(G) < f(simw(L(G))) for some function f.



Proof of equivalence for line graphs

simw(G — v) < simw(G)
simw(G/e) < simw(G) [Kang et al. 2017]

Lemma (B., Munaro, Paulusma, Yang, 2023+)
simw(L(G/e)) < simw(L(G))



Proof of equivalence for line graphs
simw(G — v) < simw(G)
simw(G/e) < simw(G) [Kang et al. 2017]
Lemma (B., Munaro, Paulusma, Yang, 2023+)
simw(L(G/e)) < simw(L(G))

Lemma
tw(G) < f(simw(L(G))) for some function f.

Proof.
if tw(G) large, then G has a large grid minor H
simw(L(G)) > simw(L(H))

since L(H) is Ke -subgraph-free, there are g and h s.t.
g(simw(L(H))) > tw(L(H)) and h(tw(L(H))) > tw(G). O



Tree-independence number

What if cliques are the only obstruction to having small treewidth?
Independence number of a tree decomposition: the maximum size
of an independent set induced by a bag

Tree-independence number of a graph G, denoted tree-a(G) : the
minimum independence number over all tree decompositions.

simw(G) < tree-a(G) [Munaro and Yang 2023]
tree-a(G) < tw(G) + 1 [Dallard, Milani¢, Storgel, 2024]



Why tree-independence number?

Various algorithmic results for packing problems (IS, FVS, ...)

Theorem (Dallard, Fomin, Golovach, Korhonen, Milani¢ 2022+ )

There is an approximation algorithm for computing a tree
decomposition of bounded independence number.

Conjecture (Dallard, Milani¢, étorgel 2022+)

A hereditary class has bounded tree-independence number iff there
exists a function f such that tw(G) < f(w(G)).



Tree-independence number: an example

(&)

This decomposition has independence number 1.

tree-a(G) <1



Tree-independence number: an example

(&)

This decomposition has independence number 1.

tree-a(G) =1
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Comparing K :-subgraph-free graphs

sim-width
N
/wim-width
twin-width I tree-independence number
clique-width

r

treewidth



Comparing line graphs

sim-width
/ T N
mim-width
tree-independence number
twin-width I
7
clique-width
l

treewidth



Comparing K; -free graphs

' line graphs

K, ;-free graphs

Kt +-free: no induced subgraph isomorphic to K ;.



Comparing K; -free graphs

sim-width
{ tree-independence number
mim-width
twin-width l
clique-width

!

treewidth

Theorem (B., Munaro, Paulusma, Yang, 2023+)

Given a Ks ¢-free graph G and a decomposition of mim-width w,
we can construct a tree decomposition of G with independence
number at most 6(21+%=1 4 swtt1l) in O(n* +4)-time.



Comparing K -free graphs

sim—width%
{ tree-independence number
mim-width
twin-width l
clique-width
i

treewidth

Open problem: is tree-independence number less restrictive than
sim-width for K; ;-free graphs?



Comparing K -free graphs

sim—width%
{ tree-independence number
mim-width
twin-width l
clique-width
i

treewidth

Open problem: is tree-independence number less restrictive than
sim-width for K; ;-free graphs?

Yes. [Abrishami, Brianski, Czyzewska, McCarty, Milani¢, and Rzazewski]



Open problems

Is there an XP algorithm, parameterized by k, that either decides
that mimw(G) > k (or simw(G) > k), or outputs a decomposition
of G of mim-width (or sim-width) at most f(k)?



Open problems

Is there an XP algorithm, parameterized by k, that either decides
that mimw(G) > k (or simw(G) > k), or outputs a decomposition
of G of mim-width (or sim-width) at most f(k)?

tw(G) +1

2 < cew(L(G)) < 2tw(G) +2

[Gurski and Wanke 2007]

{bVZ(SG)J < mimw(L(G)) < bw(G)

[B., Munaro, Paulusma, Yang, 2023+]

Open: similar bounds for sim-width? tree-independence number?



Open problems

If G is d-degenerate with a matching of size i, then G has an
induced matching of size at least uu/(4d — 1).

Can we do better? (Can't do better than p/2d.)



Open problems

If G is d-degenerate with a matching of size i, then G has an
induced matching of size at least uu/(4d — 1).

Can we do better? (Can't do better than p/2d.)

Find an asymptotically optimal upper bound on tree-independence
number in terms of clique-width and the largest induced K ;.
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Summary

All graphs:
simw

mlmm

twinw tree-av

\>cw
!
tw
Line graphs:
simw

it
twinw C%v/tree—oz
1

tw

Thanks for your attention.

Kt t-subgraph free:
simw

- i

twinw tree-«
cw



