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Outline

Introduction about graph-theoretic expansion and a classical result.

Introduction about linear-algebraic expansion and some previous results.

An overview of our main results.

1 Dimension expansion ̸⇒ Quantum expansion.
2 Quantum expansion ⇒ Dimension expansion.
3 Linear-algebraic expansion properly generalizes graph-theoretic expansion.
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What are expanders?

Expanders are graphs that are simultaneously sparse and highly connected.

Expanders are graphs for which a random walk converges to its limiting
distribution as rapidly as possible.

Figure source: https://www.ams.org/notices/200407/what-is.pdf
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Definition of graph-theoretic expansion

Let G = ([n],E) be a d-regular graph.

The spectral expansion of G:

λ(G) := the second-largest absolute value over all eigenvalues of A,

where A is the normalized adjacency matrix of G.

The largest absolute value over all eigenvalues of A is 1!

The larger the spectral gap 1 − λ(G) is, the better the expansion is.
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Examples of graph expansion

Edge expansion for vertex subset V =
6
2 = 3
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Definition of graph-theoretic expansion

Let G = ([n],E) be a d-regular graph.

The edge expansion of G:

h(G) := min
V⊆[n]

1≤|V|≤ n
2

|∂(V)|
|V|

,

where ∂(V) := {{i, j} ∈ E : i ∈ V, j ∈ [n]\V}.

https://qsi.uts.edu.au/


 

 

Examples of graph expansion

Vertex expansion for vertex subset V =
4
2 = 2

https://qsi.uts.edu.au/


 

 

Definition of graph-theoretic expansion

Let G = ([n],E) be a d-regular graph.

The vertex expansion of G:

µ(G) := min
V⊆[n]

1≤|V|≤ n
2

|∂out(V)|
|V|

,

where ∂out(V) := {j ∈ [n]\V : ∃i ∈ V, s.t. {i, j} ∈ E}.

https://qsi.uts.edu.au/


 

 

A classical result of their relationship

Recall that
λ: spectral expansion
h: edge expansion
µ: vertex expansion

For any d-regular graph G, the three notions of expansion are all equivalent, in
the sense that

µ(G)

d ≤ h(G) ≤ µ(G) (By definition);

1 − λ(G)

2 ≤ h(G) ≤
√

2(1 − λ(G)) (discrete Cheeger’s inequality)

[Dodziuk’84, Alon-Milman’85, Alon’86]

https://qsi.uts.edu.au/
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Definition of some linear-algebraic expansion

Given a matrix tuple B = (B1, . . . ,Bd) ∈ M(n,C)d.

B is a doubly stochastic matrix tuple if
∑d

i=1 BiB∗
i =

∑d
i=1 B∗

i Bi = dIn.

The associated quantum operator is the linear map ΦB : M(n,C) →
M(n,C) defined by

ΦB(X) :=
1
d

d∑
i=1

BiXB∗
i .
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Definition of some linear-algebraic expansion

The quantum expansion of ΦB [Ben–Aroya-Ta–shma’07, Hastings’07]:

λ(B) := the second-largest absolute value over all eigenvalues of ΦB.

The quantum edge expansion of ΦB [Hastings’07]:

hQ(B) := min
V≤Cn

1≤dim(V)≤ n
2

⟨In − PV,ΦB(PV)⟩
dim(V)

,

where PV is the orthogonal projection to the subspace V ≤ Cn.

https://qsi.uts.edu.au/
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Intuition of the definition

edge expansion quantum edge expansion

min
V⊆[n]

1≤|V|≤ n
2

|∂(V)|
|V|

===⇒ min
V≤Cn

1≤dim(V)≤ n
2

⟨In − PV,ΦB(PV)⟩
dim(V)

ΦB is an analogue of the normalized adjacency matrix A of a graph G.
Consider that all the Bi’s are permutation matrices.
Consider that V is a coordinate subspace. (So PV is diagonal of 0 and 1!)
Then In − PV can be treated as an indicator vector x, and ΦB(PV) = Ax.
So ⟨In − PV,ΦB(PV)⟩ counts the edges between a set and its complement.
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Definition of some linear-algebraic expansion

Given a matrix tuple B = (B1, . . . ,Bd) ∈ M(n,C)d.
The dimension expansion of B [Barak-Impagliazzo-Shipilka-Wigderson’04]:

µ(B) := min
V≤Cn

1≤dim(V)≤ n
2

dim(V + B(V))− dim(V)

dim(V)
,

where B(V) :=
〈
∪i∈[d] {Biv : v ∈ V}

〉
.

Given the vertex expansion µ(G) and treat G as a tuple of permutations
(P1, . . . ,Pd) acting on [n]:

∀V ⊆ [n],
∣∣∣∣∣V ∪

d⋃
i=1

Pi(V)

∣∣∣∣∣ ≥ (1 + µ(G))|V|

Change the permutation action and underlying object to be more general.
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Definition of some linear-algebraic expansion

Given a matrix tuple B = (B1, . . . ,Bd) ∈ M(n,C)d.
The dimension edge expansion of B (proposed by us!):

hD(B) := min
V≤Cn

1≤dim(V)≤ n
2

∑d
i=1 rank(T∗

V⊥BiTV)

dim(V)
,

where V⊥ means the orthogonal complement of V, and the columns of TV
form an orthonormal basis of V.
Let dim(V) = r and U =

[
TV TV⊥

]
be an n × n unitary matrix.

U∗BiU =

[
∗ ∗

T∗
V⊥BiTV ∗

]
,

where T∗
V⊥BiTV ∈ M((n − r)× r,C).
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Intuition of the definition

vertex expansion ===⇒ dimension expansion

edge expansion ===⇒ dimension edge expansion

If we restrict
the matrix tuple consisting of permutation matrices only and;
the minimum to coordinate subspaces only,

one can precisely recover the definition of corresponding graph expansion.
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Overview of previous results

edgespectral vertexGraph-theoretic:

Linear-algebraic: quantum

dimension edge

quantum edge

dimension(2) (3)

?

(1)

(1): [Bannink-Briët-Labib-Maassen’20]
(2): [Hastings’07]
(3): [Lubotzky-Zelmanov’08]
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Question and Answer

Thank you so much!
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