On linear-algebraic notions of expansion

Speaker: Chuanqi Zhang
Joint work with Yinan Li, Youming Qiao, Avi Wigderson, and Yuval Wigderson

Centre for Quantum Software and Information
University of Technology Sydney

45th Australasian Combinatorics Conference, December 2023

Outline

- Introduction about graph-theoretic expansion and a classical result.
- Introduction about linear-algebraic expansion and some previous results.
- An overview of our main results.
(- Dimension expansion \nRightarrow Quantum expansion.
(3) Quantum expansion \Rightarrow Dimension expansion.
© Linear-algebraic expansion properly generalizes graph-theoretic expansion.

Outline

- Introduction about graph-theoretic expansion and a classical result.
- Introduction about linear-algebraic expansion and some previous results.
- An overview of our main results.
(1) Dimension expansion \nRightarrow Quantum expansion.
(3) Quantum expansion \Rightarrow Dimension expansion.
© Linear-algebraic expansion properly generalizes graph-theoretic expansion.

Outline

- Introduction about graph-theoretic expansion and a classical result.
- Introduction about linear-algebraic expansion and some previous results.
- An overview of our main results.
(1) Dimension expansion \nRightarrow Quantum expansion.
(2) Quantum expansion \Rightarrow Dimension expansion.
(3) Linear-algebraic expansion properly generalizes graph-theoretic expansion.

What are expanders?

- Expanders are graphs that are simultaneously sparse and highly connected.

- Expanders are graphs for which a random walk converges to its limiting distribution as rapidly as possible.

What are expanders?

- Expanders are graphs that are simultaneously sparse and highly connected.

- Expanders are graphs for which a random walk converges to its limiting distribution as rapidly as possible.

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The spectral expansion of G :
$\lambda(G):=$ the second-largest absolute value over all eigenvalues of A, where A is the normalized adjacency matrix of G.
- The largest absolute value over all eigenvalues of A is 1 !
- The larger the spectral gap $1-\lambda(G)$ is, the better the expansion is.

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The spectral expansion of G :
$\lambda(G):=$ the second-largest absolute value over all eigenvalues of A,
where A is the normalized adjacency matrix of G.
- The largest absolute value over all eigenvalues of A is 1 !
- The larger the spectral gap $1-\lambda(G)$ is, the better the expansion is.

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The spectral expansion of G :
$\lambda(G):=$ the second-largest absolute value over all eigenvalues of A, where A is the normalized adjacency matrix of G.
- The largest absolute value over all eigenvalues of A is 1 !
- The larger the spectral gap $1-\lambda(G)$ is, the better the expansion is.

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The spectral expansion of G :
$\lambda(G):=$ the second-largest absolute value over all eigenvalues of A, where A is the normalized adjacency matrix of G.
- The largest absolute value over all eigenvalues of A is 1 !
- The larger the spectral gap $1-\lambda(G)$ is, the better the expansion is.

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The spectral expansion of G :
$\lambda(G):=$ the second-largest absolute value over all eigenvalues of A, where A is the normalized adjacency matrix of G.
- The largest absolute value over all eigenvalues of A is 1 !
- The larger the spectral gap $1-\lambda(G)$ is, the better the expansion is.

Examples of graph expansion

Edge expansion for vertex subset $V=\frac{6}{2}=3$

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The edge expansion of G :

$$
h(G):=\min _{\substack{V \subseteq[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|},
$$

where $\partial(V):=\{\{i, j\} \in E: i \in V, j \in[n] \backslash V\}$.

Examples of graph expansion

Vertex expansion for vertex subset $V=\frac{4}{2}=2$

Definition of graph-theoretic expansion

- Let $G=([n], E)$ be a d-regular graph.
- The vertex expansion of G :

$$
\mu(G):=\min _{\substack{V \subseteq \subseteq n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{\left|\partial_{\text {out }}(V)\right|}{|V|},
$$

where $\partial_{\text {out }}(V):=\{j \in[n] \backslash V: \exists i \in V$, s.t. $\{i, j\} \in E\}$.

A classical result of their relationship

Recall that

- λ : spectral expansion
- h : edge expansion
- μ : vertex expansion

For any d-regular graph G, the three notions of expansion are all equivalent, in the sense that

- $\frac{\mu(G)}{d} \leq h(G) \leq \mu(G)$ (By definition);
- $\frac{1-\lambda(G)}{2} \leq h(G) \leq \sqrt{2(1-\lambda(G))}$ (discrete Cheeger's inequality)
[Dodziuk'84, Alon-Milman'85, Alon'86]

A classical result of their relationship

Recall that

- λ : spectral expansion
- h : edge expansion
- μ : vertex expansion

For any d-regular graph G, the three notions of expansion are all equivalent, in the sense that

- $\frac{\mu(G)}{d} \leq h(G) \leq \mu(G)$ (By definition);
- $\frac{1-\lambda(G)}{2} \leq h(G) \leq \sqrt{2(1-\lambda(G))}$ (discrete Cheeger's inequality)
[Dodziuk'84, Alon-Milman'85, Alon'86]

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- \mathbf{B} is a doubly stochastic matrix tuple if $\sum_{i=1}^{d} B_{i} B_{i}^{*}=\sum_{i=1}^{d} B_{i}^{*} B_{i}=d I_{n}$.
- The associated quantum operator is the linear map $\Phi_{\mathrm{B}}: \mathrm{M}(n, \mathbb{C}) \rightarrow$ $\mathrm{M}(n, \mathbb{C})$ defined by

$$
\Phi_{\mathrm{B}}(X):=\frac{1}{d} \sum_{i=1}^{d} B_{i} X B_{i}^{*} .
$$

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- B is a doubly stochastic matrix tuple if $\sum_{i=1}^{d} B_{i} B_{i}^{*}=\sum_{i=1}^{d} B_{i}^{*} B_{i}=d I_{n}$.
- The associated quantum operator is the linear map $\Phi_{\mathrm{B}}: \mathrm{M}(n, \mathbb{C}) \rightarrow$ $\mathrm{M}(n, \mathbb{C})$ defined by

$$
\Phi_{\mathrm{B}}(X):=\frac{1}{d} \sum_{i=1}^{d} B_{i} X B_{i}^{*} .
$$

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- B is a doubly stochastic matrix tuple if $\sum_{i=1}^{d} B_{i} B_{i}^{*}=\sum_{i=1}^{d} B_{i}^{*} B_{i}=d I_{n}$.
- The associated quantum operator is the linear map $\Phi_{\mathbf{B}}: \mathrm{M}(n, \mathbb{C}) \rightarrow$ $\mathrm{M}(n, \mathbb{C})$ defined by

$$
\Phi_{\mathbf{B}}(X):=\frac{1}{d} \sum_{i=1}^{d} B_{i} X B_{i}^{*} .
$$

Definition of some linear-algebraic expansion

- The quantum expansion of $\Phi_{\mathbf{B}}$ [Ben-Aroya-Ta-shma'07, Hastings'07]:
$\lambda(\mathbf{B}):=$ the second-largest absolute value over all eigenvalues of $\Phi_{\mathbf{B}}$.
- The quantum edge expansion of $\Phi_{\mathbf{B}}$ [Hastings'07]:

where P_{V} is the orthogonal projection to the subspace $V \leq \mathbb{C}^{n}$.

Definition of some linear-algebraic expansion

- The quantum expansion of Φ_{B} [Ben-Aroya-Ta-shma'07, Hastings'07]: $\lambda(\mathbf{B}):=$ the second-largest absolute value over all eigenvalues of $\Phi_{\mathbf{B}}$.
- The quantum edge expansion of $\Phi_{\mathbf{B}}$ [Hastings' 07]:

$$
h_{Q}(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)},
$$

where P_{V} is the orthogonal projection to the subspace $V \leq \mathbb{C}^{n}$.

Intuition of the definition

edge expansion quantum edge expansion

$$
\min _{\substack{V \subset[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}===\Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- Φ_{B} is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathrm{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subseteq\left[[] \\ 1 \leq|V| \frac{n}{2}\right.}} \frac{|\partial(V)|}{|V|}===\Rightarrow \min _{\substack{V \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- Φ_{B} is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathrm{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathrm{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subset[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}==\Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- Φ_{B} is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathbf{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathrm{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subset[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}==\Rightarrow \Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- Φ_{B} is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- A d-regular graph can be decomposed as a union of d permutations.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathbf{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathrm{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subseteq[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}==\Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- Φ_{B} is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathrm{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathrm{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subseteq[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}==\Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- $\Phi_{\mathbf{B}}$ is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathbf{B}}\left(P_{V}\right)=A x$.
- $\mathrm{So}\left\langle I_{n}-P_{V}, \Phi_{\mathrm{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Intuition of the definition

edge expansion

$$
\min _{\substack{V \subseteq[n] \\ 1 \leq|V| \leq \frac{n}{2}}} \frac{|\partial(V)|}{|V|}==\Rightarrow \min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle}{\operatorname{dim}(V)}
$$

- $\Phi_{\mathbf{B}}$ is an analogue of the normalized adjacency matrix A of a graph G.
- Consider that all the B_{i} 's are permutation matrices.
- Consider that V is a coordinate subspace. (So P_{V} is diagonal of 0 and 1!)
- Then $I_{n}-P_{V}$ can be treated as an indicator vector x, and $\Phi_{\mathbf{B}}\left(P_{V}\right)=A x$.
- So $\left\langle I_{n}-P_{V}, \Phi_{\mathbf{B}}\left(P_{V}\right)\right\rangle$ counts the edges between a set and its complement.

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension expansion of \mathbf{B} [Barak-Impagliazzo-Shipilka-Wigderson'04]:

$$
\mu(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\operatorname{dim}(V+\mathbf{B}(V))-\operatorname{dim}(V)}{\operatorname{dim}(V)},
$$

where $\mathbf{B}(V):=\left\langle\cup_{i \in[d]}\left\{B_{i} v: v \in V\right\}\right\rangle$.

- Given the vertex expansion $\mu(G)$ and treat G as a tuple of permutations $\left(P_{1}, \ldots, P_{d}\right)$ acting on $[n]$:

$$
\forall V \subseteq[n],\left|V \cup \bigcup_{i=1}^{d} P_{i}(V)\right| \geq(1+\mu(G))|V|
$$

- Change the permutation action and underlying object to be more general.

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension expansion of \mathbf{B} [Barak-Impagliazzo-Shipilka-Wigderson'04]:

$$
\mu(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\operatorname{dim}(V+\mathbf{B}(V))-\operatorname{dim}(V)}{\operatorname{dim}(V)},
$$

where $\mathbf{B}(V):=\left\langle\cup_{i \in[d]}\left\{B_{i} v: v \in V\right\}\right\rangle$.

- Given the vertex expansion $\mu(G)$ and treat G as a tuple of permutations $\left(P_{1}, \ldots, P_{d}\right)$ acting on $[n]$:

$$
\forall V \subseteq[n],\left|V \cup \bigcup_{i=1}^{d} P_{i}(V)\right| \geq(1+\mu(G))|V|
$$

- Change the permutation action and underlying object to be more general.

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension expansion of \mathbf{B} [Barak-Impagliazzo-Shipilka-Wigderson'04]:

$$
\mu(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\operatorname{dim}(V+\mathbf{B}(V))-\operatorname{dim}(V)}{\operatorname{dim}(V)},
$$

where $\mathbf{B}(V):=\left\langle\cup_{i \in[d]}\left\{B_{i} v: v \in V\right\}\right\rangle$.

- Given the vertex expansion $\mu(G)$ and treat G as a tuple of permutations $\left(P_{1}, \ldots, P_{d}\right)$ acting on $[n]$:

$$
\forall V \subseteq[n],\left|V \cup \bigcup_{i=1}^{d} P_{i}(V)\right| \geq(1+\mu(G))|V|
$$

- Change the permutation action and underlying object to be more general.

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension edge expansion of \mathbf{B} (proposed by us!):

$$
h_{D}(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\sum_{i=1}^{d} \operatorname{rank}\left(T_{V^{\perp}}^{*} B_{i} T_{V}\right)}{\operatorname{dim}(V)},
$$

where V^{\perp} means the orthogonal complement of V, and the columns of T_{V} form an orthonormal basis of V.

- Let $\operatorname{dim}(V)=r$ and $U=\left[\begin{array}{ll}T_{V} & T_{V^{\perp}}\end{array}\right]$ be an $n \times n$ unitary matrix.

$$
U^{*} B_{i} U=\left[\begin{array}{cc}
* & * \\
T_{V^{\perp}}^{*} B_{i} T_{V} & *
\end{array}\right],
$$

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension edge expansion of \mathbf{B} (proposed by us!):

$$
h_{D}(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\sum_{i=1}^{d} \operatorname{rank}\left(T_{V^{\perp}}^{*} B_{i} T_{V}\right)}{\operatorname{dim}(V)},
$$

where V^{\perp} means the orthogonal complement of V, and the columns of T_{V} form an orthonormal basis of V.

- Let $\operatorname{dim}(V)=r$ and $U=\left[\begin{array}{ll}T_{V} & T_{V^{\perp}}\end{array}\right]$ be an $n \times n$ unitary matrix.

$$
U^{*} B_{i} U=\left[\begin{array}{cc}
* & * \\
T_{V^{\perp}}^{*} B_{i} T_{V} & *
\end{array}\right],
$$

where $T_{V \perp}^{*} B_{i} T_{V} \in \mathrm{M}((n-r) \times r, \mathbb{C})$.

Definition of some linear-algebraic expansion

- Given a matrix tuple $\mathbf{B}=\left(B_{1}, \ldots, B_{d}\right) \in \mathrm{M}(n, \mathbb{C})^{d}$.
- The dimension edge expansion of \mathbf{B} (proposed by us!):

$$
h_{D}(\mathbf{B}):=\min _{\substack{V \leq \mathbb{C}^{n} \\ 1 \leq \operatorname{dim}(V) \leq \frac{n}{2}}} \frac{\sum_{i=1}^{d} \operatorname{rank}\left(T_{V^{\perp}}^{*} B_{i} T_{V}\right)}{\operatorname{dim}(V)},
$$

where V^{\perp} means the orthogonal complement of V, and the columns of T_{V} form an orthonormal basis of V.

- Let $\operatorname{dim}(V)=r$ and $U=\left[\begin{array}{ll}T_{V} & T_{V^{\perp}}\end{array}\right]$ be an $n \times n$ unitary matrix.

$$
U^{*} B_{i} U=\left[\begin{array}{cc}
* & * \\
T_{V^{\perp}}^{*} B_{i} T_{V} & *
\end{array}\right],
$$

where $T_{V^{\perp}}^{*} B_{i} T_{V} \in \mathrm{M}((n-r) \times r, \mathbb{C})$.

Intuition of the definition

$$
\begin{aligned}
\text { vertex expansion } & ===\Rightarrow \quad \text { dimension expansion } \\
\text { edge expansion } & ===\Rightarrow \text { dimension edge expansion }
\end{aligned}
$$

- If we restrict
- the matrix tuple consisting of permutation matrices only and;
- the minimum to coordinate subspaces only,
one can precisely recover the definition of corresponding graph expansion.

Intuition of the definition

vertex expansion $===\Rightarrow$ dimension expansion edge expansion $===\Rightarrow$ dimension edge expansion

- If we restrict
- the matrix tuple consisting of permutation matrices only and;
- the minimum to coordinate subspaces only, one can precisely recover the definition of corresponding graph expansion.

Overview of previous results

- (1): [Bannink-Briët-Labib-Maassen'20]
- (2): [Hastings'07]
- (3): [Lubotzky-Zelmanov'08]

Overview of our main results

Graph-theoretic:

Linear-algebraic:

- (1): [Bannink-Briët-Labib-Maassen'20]
- (2): [Hastings'07]
- (3): [Lubotzky-Zelmanov'08]

Question and Answer

Thank you so much!

