The Distinguishing number of bipartite 2-arc-transitive graphs

Joint work with Alice Devillers, Luke Morgan and Friedrich Rober

The University of Western Australia

Lei Chen

11/12/2023

Bipartite Graph

• A bipartite graph is a graph whose vertex set can be divides into 2 disjoint sets such that no two graph vertices within the same set are adjacent.

- A bipartite graph does not contain odd cycles
- The Petersen graph is not a bipartite graph

Properties of Graphs

- A graph Γ is said to be connected if for any two vertices u and v in Γ there exists a path $u \rightarrow ... \rightarrow v$.
- A graph Γ is said to be vertex-transitive if Aut(Γ) acts transitively on the vertex set of Γ.
- A graph Γ is said to be 2-arc-transitive if Aut(Γ) acts transitively on the set of 2-arcs {u →v →w} of Γ.

Distinguishing number (of a graph)

- The distinguishing number D(Γ) of a graph is the least integer such that has a vertex labeling with labels that is preserved only by a trivial automorphism.
- The distinguishing number D_A(G) of a group G acting on a set A is the least integer k such that there exists a partition Π of A into k parts such that only the identity of G stabilises each part.

Distinguishing number for K_{n,n}

- Let Δ and Δ' be two parts of Γ, then for every u in Δ and every v in Δ', there exists an arc between u and v.
- G=Aut(Γ) is isomorphic to Sym(n) wr Sym(2)
- G=G+:<x>, where x is an involution swapping Δ and Δ' and G+=H × K, where H and K are isomorphic to Sym(n)
- The induced action of G^+ on Δ is Sym(n)
- *D*(*G*)=*n*+1

Motivation

- Devillers, Morgan, Harper: The distinguishing number of quasiprimitive(all of the non-trivial normal subgroups are transitive) and semiprimitive groups
- Investigate the distinguishing number of non-bipartite graphs
- Most of them have distinguishing number 2
- If $\Gamma \neq K_n$ and G quasiprimitively act on Γ such that G is not Sym(n) or Alt(n), then D(G) < 5.

Result of Seress

 If X is a primitive group of degree n and Alt(n) is not contained in X, then either D(X)=2, or (X, n) is listed below

TABLE 1.	The affine	groups X	≤ Sym	(n) in	the set	P
----------	------------	------------	-------	--------	---------	---

ups with $D(X)$	= 3			
[5, 2]	[5, 3]	[7, 4]	[8, 2]	[9, 4]
D_{10}	F_{20}	F_{21}	$2^3.F_{21}$	$3^{2}.D_{8}$
[9, 5]	[9, 6]	[9,7]	[16, 16]	[16, 17]
$3^2.8.2$	$3^2.SL(2,3)$	$3^2.GL(2,3)$	$2^4.\Gamma L(2,4)$	$2^4.Alt(6)$
[16, 18]	[16, 19]	[16, 20]	[32, 3]	
2^4 .Sym(6)	$2^4.Alt(7)$	2^4 .Alt(8)	$2^5.GL(5,2)$	
ups with $D(X)$	= 4			
[8, 3]				
$2^3.GL(3,2)$				
	$\begin{array}{c} \mbox{ups with } D(X) \\ \hline [5,2] \\ D_{10} \\ \hline [9,5] \\ 3^2.8.2 \\ \hline [16,18] \\ 2^4.{\rm Sym}(6) \\ \hline \mbox{ups with } D(X) \\ \hline \mbox{ups with } D(X) \\ \hline [8,3] \\ 2^3.{\rm GL}(3,2) \end{array}$	$\begin{array}{ll} \mbox{ups with } D(X) = 3 \\ \hline [5,2] & [5,3] \\ \hline D_{10} & F_{20} \\ \hline [9,5] & [9,6] \\ 3^2.8.2 & 3^2.{\rm SL}(2,3) \\ \hline [16,18] & [16,19] \\ 2^4.{\rm Sym}(6) & 2^4.{\rm Alt}(7) \\ \hline ps \ with \ D(X) = 4 \\ \hline [8,3] \\ 2^3.{\rm GL}(3,2) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

TABLE 2. The almost simple groups $X \leq \text{Sym}(n)$ in the set \mathcal{P}

Grou	ups with $D(X)$:	= 3			
ID	[6, 1]	[8, 4]	[8, 5]	[9, 8]	[9, 9]
<u>X</u>	PSL(2,5)	PSL(2,7)	PGL(2,7)	PSL(2,8)	$P\Gamma L(2,8)$
	[10, 2]	[10, 3]	[10, 4]	[10, 5]	[10, 6]
	Sym(5)	Alt(6)	$\operatorname{Sym}(6)$	$Alt(6).2_{2}$	$Alt(6).2_{3}$
	[10, 7]	[11, 5]	[12, 2]	[12, 3]	[13, 7]
	$Alt(6).2^{2}$	PSL(2,11)	PGL(2, 11)	M_{11}	PSL(3,3)
	[14, 2]	[15, 4]	[17, 7]	[17, 8]	[21, 7]
	PGL(2, 13)	Alt(8)	PSL(2, 16).2	$P\Gamma L(2, 16)$	$P\Gamma L(3,4)$
	[22, 1]	[22, 2]	[23, 5]	[24, 3]	
	M_{22}	$M_{22}.2$	M_{23}	M_{24}	
Grou	ups with $D(X)$	= 4.			
ID	[6, 2]	[7, 5]	[11, 6]	[12, 4]	
X	PGL(2,5)	$\mathrm{PSL}(3,2)$	M_{11}	M_{12}	

Quotient graph

Input: connected graph Γ=(V,E) and

- *G* is contained in Aut(Γ), *G* transitive on *E*
- N normal subgroup of G
- *Output: normal quotient Γ/N=(V/N,E/N)*
- V/N set of N-orbits in V
- E/N N-orbit pairs connected by at least 1 edge

Results about the quotient graph of a bipartite graph

 Praeger: Γ a G-vertex-transitive (G,2)-arc-transitive bipartite graph, if N is an intransitive subgroup of G with more than 2 orbits on V Γ, then N is semiregular (i.e. the stabiliser of any point x in N is trivial). Moreover, the quotient graph is also (G/N,2)-arc-transitive bipartite graph.

Our strategy

- Need to find a normal subgroup N of G contained in G⁺ (an index 2 subgroup of G which has exactly two orbits Δ and Δ') such that N is intransitive on both Δ and Δ'. Then N has at least 2 orbits on each side of Γ and therefore there are more than 3 orbits.
- Pick N carefully so that G^+/N acts quasiprimitively on Δ/N and Δ'/N .
- Note that $D(G) \le D(G/N)$.

Theorem

Let Γ be a G-vertex-transitive (G,2)-arc-transitive bipartite graph and N be an intransitive normal subgroup of G contained in G⁺ that is maximal subject to being intransitive on both Δ and Δ' . Then N is semiregular on VΓ. If D(G^Γ)>2, then

• N is normal in G

 $_{\odot}$ (1) Γ/N is $K_{n,n'}$ G⁺/N is primitive on both Δ/N and Δ'/N

 $\circ or(2)$ G⁺/N is faithful and quasiprimitive on both Δ /N and Δ '/N.

Case (2) of Theorem

• Faithfulness of G+/N implies that

 $G^+/N = \{(x,y) | x \text{ in } H, y \text{ in } K\},\$

where H acts on Δ/N and K acts on Δ'/N , where $x=y^f$, where f is some automorphism of H.

• This implies that once the symmetry on Δ/N is broken, the symmetry on Δ'/N is also broken.

Δ

Δ'

Numerical Bound

Let Γ be a G-vertex-transitive (G,2)-arc-transitive bipartite graph

- Take the normal quotient, then we have $D(G) \le D(G/N)$
- If G⁺/N is not containing Alt(n), then G⁺/N acts faithfully on both
 Π:=Δ/N and Π':=Δ'/N and so D(G/N)≤ D((G⁺/N)^Π)
- Since G+/N also acts quasiprimitively on Π, we know that D((G+/ N)^Π) is bounded by 4
- Hence $D(G) \leq 4$

Main Theorem

Theorem 1.1. Let Γ be a bipartite connected G-vertex-transitive, (G, 2)-arc transitive graph with $G \leq \operatorname{Aut}(\Gamma)$. If $D(G) \geq 3$ then one of the following holds:

- 1. $\Gamma = K_{6,6}, G^+ = \text{Diag}_{\varphi}(H \times H)$ where H = Alt(6) or Sym(6) and φ is an outer automorphism of Sym(6), and D(G) = 3;
- 2. $\Gamma = K_{n,n} nK_2$, $G = Alt(n) \times C_2$ and $D(G) = \lceil \sqrt{n-1} \rceil$ with $n \ge 6$;
- 3. $\Gamma = K_{n,n} nK_2$, $G = \text{Sym}(n) \times C_2$ and $D(G) = \lfloor \sqrt{n} \rfloor + 1$ with $n \ge 4$;
- 4. $\Gamma = K_{n,n}$, and

$$D(G) = \begin{cases} n-1 & \text{if } G^+ = \operatorname{Alt}(n) \times \operatorname{Alt}(n) \\ n & \text{if } G^+ = \langle \operatorname{Alt}(n) \times \operatorname{Alt}(n), ((1,2), (1,2)) \rangle \\ n+1 & \text{if } G^+ = \operatorname{Sym}(n) \times \operatorname{Sym}(n) \end{cases}$$

5. Γ = K_{8,8} - 8K₂, G ≅ AGL(3,2) × C₂ and D(G) = 3;
6. Γ = K_{8,8}, G = AGL(3,2) ≥ C₂ and D(G) = 5;

REFERENCE

- C.E. Praeger, Finite transitive permutation groups and bipartite vertextransitive graphs, Illinois Journal of Mathematics, 47 (2003), 461-475
- A. Seress, Primitive groups with no regular orbits on the set of subsets, Bulletin of the London Mathematical Society, 29 (1997), 697-704
- A.Devillers, L. Morgan and S. Harper, The distinguishing number of quasiprimitive and semiprimitive groups, Archiv der Mathematik 113.2 (2019), 127-139.
- M. Giudici, C. Li and C.E. Praeger, Analysing finite locally s-arc-transitive graphs, Transactions of the American Mathematical Society 356 (2004).

