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Covering Array
Definition

▶ Let N, k , t , v , and λ be positive integers.

▶ Let C be an N × k array with entries from an alphabet Σ of
size v ; we typically take Σ = {0, . . . , v − 1}.

▶ When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,
(c1, . . . , ct) is a tuple of t column indices (ci ∈ {1, . . . , k}),
and ci ̸= cj whenever νi ̸= νj , the t-tuple
{(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

▶ C λ-covers the t-way interaction {(ci , νi) : 1 ≤ i ≤ t} if, in
at least λ rows ρ1, . . . , ρλ of C, the entry in row ρr and
column ci is νi for 1 ≤ r ≤ λ and 1 ≤ i ≤ t .

▶ Array C is a covering array CAλ(N; t , k , v) of strength t
and index λ when every t-way interaction is λ-covered.

▶ CANλ(t , k , v) is the minimum N for which a CAλ(N; t , k , v)
exists.
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Covering Array
CA1(13;3,10,2)

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1



Covering Arrays
via Finite Fields

Charles J.
Colbourn

Arrays over Finite Fields
Setup I

▶ George Sherwood suggested a framework for
constructing covering arrays using finite fields.

▶ Let q be a prime power, and let Fq be the finite field of
order q.

▶ Let Rt,q = {r0, . . . , rqt−1} be the set of all (row) vectors of
length t with entries from Fq , and let Tt,q be the set of all
column vectors of length t with entries from Fq , not all 0.

▶ A vector x ∈ Tt,q is a permutation vector, so called
because the multiplication of all ri ∈ Rt,q with x can be
interpreted as qt−1 permutations of Fq .
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Arrays over Finite Fields
Setup II

Lemma
Let X = {x1, . . . ,xt} be a set of vectors from Tt,q . The array
A = (aij) formed by setting aij to be the product of ri and xj is a
CA(qt ; t , t ,q) if and only if the t × t matrix X = [x1 · · · xt ] is
nonsingular.

Proof.
Array A contains some row b at least twice exactly when
rX = b has more than one solution.
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Arrays over Finite Fields
Setup III

▶ (0, . . . ,0)T cannot appear in a nonsingular matrix, so it is
not in Tt,q .

▶ For any nonzero µ ∈ Fq , substituting µxi for xi permutes
the rows does not alter the fact that it is a covering array.

▶ Define ⟨x⟩ = {µx : µ ∈ Fq , µ ̸= 0}. When x is not all 0, we
can select as the representative of ⟨x⟩ the unique vector
whose first nonzero coordinate is the multiplicative identity
element.

▶ Let Vt,q be the set of representatives of the column
vectors in Tt,q .

▶ Then |Vt,q | = qt−1
q−1 =

∑t−1
i=0 q i .
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Covering Perfect Hash Families
Definition for Higher Index

▶ A covering perfect hash family CPHFλ(n; k ,q, t) is an
n × k array C = (cij) with entries from Vt,q so that, for
every set {γ1, . . . , γt} of distinct column indices, there are
at least λ row indices ρ1, . . . , ρλ of C for which
[cρℓγ1 · · · cρℓγt ] is nonsingular for each 1 ≤ ℓ ≤ λ.

Lemma
When a CPHFλ(n; k ,q, t) exists, there exists a
CAλ(n(qt − 1) + λ; t , k ,q).
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CPHF Asymptotics for Covering Arrays

▶ Choose entries of an n × k array A uniformly at random
from Tt,q .

▶ Let T be a set of t columns of A. The probability that A
does not contain a covering t-set for T can easily be
computed.

▶ The total number of t-sets is
(
qt − 1

)t , and the number
that are covering t-sets is

∏t−1
i=0 (q

t − q i).

▶ So within one row of A, the probability that the columns of
T are not covering is

ϕt,q := 1 −
∏t−1

i=0 (q
t − q i)

(qt − 1)t = 1 −
t−1∏
i=1

qt − q i

qt − 1
.
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Asymptotics

▶ ϕN
t,q is the probability that a specified t-set of columns is

covered in 0 of the N rows.

▶ ϕN−ℓ
t,q (1 − ϕt,q)

ℓ is the probability that a specified t-set of
columns is covered in a specified choice of exactly ℓ of the
N rows.

▶ the probability that a specified t-set of columns is covered
in fewer than λ of the N rows is

ψN,t,q,λ = ϕN
t,q

λ−1∑
ℓ=0

(
N
ℓ

)[
1 − ϕt,q

ϕt,q

]ℓ

▶ Solving for the smallest N in
(k

t

)
ψN,t,q,λ < 1 leads to

asymptotic bounds for covering arrays of index λ!
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Blemishes

▶ A blemish is a t-set of columns for which fewer than λ
rows are covering.

▶ The asymptotics essentially determine the expected
number of blemishes, observing when this expectation is
less than 1, a CPHF exists.
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The Quality of the Bound

▶ Dougherty (2022) observes that the bound via CPHFs
fares worse and worse as λ increases, when compared to
a random construction of covering arrays directly. Why
does this happen?

▶ Moreover, even when λ is small, the bound via CPHFs
does not compare well when q is very small. Why does
this happen?
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The Quality of the Bound

▶ The notion of covering for a t-set of columns in a CPHF is
all or nothing, even though many t-way interactions may
be covered – possibly many times – in the covering array
generated despite rows of the CPHF not covering
everything individually.

▶ Can we exploit the partial coverage obtained when a t-set
is non-covering (i.e., singular) in a row of the CPHF?
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Blemishes and Flaws

▶ A flaw is a t-way interaction that is not covered λ or more
times.

▶ A blemish is a t-set S of columns for which at least one of
the qt t-way interactions on the columns of S is a flaw.

▶ This refined notion of blemish may reduce the expected
number of blemishes!
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Flaws

▶ Consider a t-set of columns, and the entries of a
CPHF-like array in a specific row.

▶ When these entries form a t × t matrix of rank d , in the
corresponding CA-like array, the generated rows cover

▶ qd t-way interactions each qt−d times, and
▶ the remaining qt − qd not at all.

▶ ... but not all t-way interactions are equally likely.

▶ To correct this, choose a random n × k array whose
entries are field elements (“adders”)

▶ As the CA is generated, add the appropriate adder to
each of the qt elements in the column generated from an
entry of the CPHF.
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Flaws and Blemishes

▶ It is easy to determine the probability that the array on a
t-set of columns has rank equal to d .

▶ And it is “easy” to determine the expected number of flaws
on a t-set of columns.

▶ When the expected number of flaws is less than 1, this
t-set is not a blemish.

▶ (Skipping lots of algebra,) this improves the bounds on
covering array numbers.
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Oversampling

▶ Idea: Make more columns than desired but with more
blemishes.

▶ Delete a column from each blemish so that

▶ No blemishes remain but the number of columns is
as least as large as desired.
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Examples
Strength 3, #Symbols 9

Index λ = 1
Basic Oversample

k CA CPHF FF CA CPHF FF
103 18592 6553 5832 14952 5097 5097
106 33691 13833 13122 25018 10193 10193

Index λ = 50
Basic Oversample

k CA CPHF FF CA CPHF FF
103 82541 57562 56862 76000 53922 52922
106 106693 69210 68526 93272 62658 62658
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Examples
Strength 4, #Symbols 4

Index λ = 1
Basic Oversample

k CA CPHF FF CA CPHF FF
103 5296 3316 3072 4708 2806 2806
106 14725 11221 9728 11770 8671 7936

Index λ = 50
Basic Oversample

k CA CPHF FF CA CPHF FF
103 30811 30905 26624 28884 29120 25344
106 41675 40085 34048 37365 36515 31232
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Examples
Strength 7, #Symbols 2

Index λ = 1
Basic Oversample

k CA CPHF FF CA CPHF FF
103 5695 13844 5760 5181 12447 5353
106 11862 30608 12160 10467 26798 10752

Index λ = 50
Basic Oversample

k CA CPHF FF CA CPHF FF
103 18390 50596 18176 17607 48437 17488
106 26923 74091 26880 25089 69011 25088
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Wrapping Up

▶ CPHFs make great covering arrays when q is large and λ
is small, BUT

▶ the all-or-nothing coverage underestimates the chance
that a covering array is generated!

▶ Accounting for partial coverage, we get the best of all
worlds — competitive bounds, a compact representation,
.... and even fast construction algorithms!


