Diameter of some families of quotient-complete, arc-transitive graphs

> John Mel T. Dacaymat Carmen Amarra, Joseph Damasco

University of the Philippines Diliman

45th ACC

45th ACC

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$ • $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path

• = •

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path **diameter** of Γ : largest distance between two vertices in Γ **automorphism** of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path **diameter** of Γ : largest distance between two vertices in Γ **automorphism** of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

Let $G \leq \operatorname{Aut}(\Gamma)$.

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path **diameter** of Γ : largest distance between two vertices in Γ **automorphism** of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

Let $G \leq \operatorname{Aut}(\Gamma)$. Γ is

G-vertex-transitive: *G* is transitive on $V(\Gamma)$

Given graph $\Gamma = (V(\Gamma), E(\Gamma))$

• $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

distance between two vertices: number of edges in shortest path **diameter** of Γ : largest distance between two vertices in Γ **automorphism** of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

Let $G \leq Aut(\Gamma)$. Γ is

G-vertex-transitive: *G* is transitive on $V(\Gamma)$ *G*-arc-transitive: *G* is transitive on ordered pairs of adjacent vertices (arcs)

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: Cayley graph $\Gamma = Cay(V, S)$:

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: Cayley graph $\Gamma = Cay(V, S)$:

• $V(\Gamma) = V$

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: Cayley graph $\Gamma = Cay(V, S)$:

•
$$V(\Gamma) = V$$
 • $E(\Gamma) = \{\{u, v\} \mid u - v \in S\}$

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: **Cayley graph** $\Gamma = Cay(V, S)$:

•
$$V(\Gamma) = V$$
 • $E(\Gamma) = \{\{u, v\} \mid u - v \in S\}$

Some properties:

• S = neighbors of 0_V

A 3 >

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: **Cayley graph** $\Gamma = Cay(V, S)$:

•
$$V(\Gamma) = V$$
 • $E(\Gamma) = \{\{u, v\} \mid u - v \in S\}$

Some properties:

- S = neighbors of 0_V
- Γ is connected $\iff \langle S \rangle = V$

★ Ξ →

Given 2-dimensional vector space $V, S \subseteq V^*$ such that S = -S: Cayley graph $\Gamma = Cay(V, S)$:

• $V(\Gamma) = V$ • $E(\Gamma) = \{\{u, v\} \mid u - v \in S\}$

Some properties:

- $S = \text{neighbors of } 0_V$
- Γ is connected $\iff \langle S \rangle = V$
- diam(Γ) $\leq n \iff V \subseteq S \cup (S+S) \cup \ldots \cup \underbrace{(S+S+\ldots+S)}_{n \text{ copies}}$

Example:
$$\Gamma = Cay(V, S)$$

•
$$V = \mathbb{F}_3 \oplus \mathbb{F}_3$$

•
$$S = \{(1,1), (1,2), (2,1), (2,2)\}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Example:
$$\Gamma = Cay(V, S)$$

•
$$V = \mathbb{F}_3 \oplus \mathbb{F}_3$$

•
$$S = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$(2,2)-(0,1)=(2,1)\in S$$

Example:
$$\Gamma = Cay(V, S)$$

•
$$V = \mathbb{F}_3 \oplus \mathbb{F}_3$$

•
$$S = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$(2,2)-(0,1)=(2,1)\in S \ \Rightarrow \ \{(2,2),(0,1)\}\in E(\Gamma)$$

Example:
$$\Gamma = Cay(V, S)$$

•
$$V = \mathbb{F}_3 \oplus \mathbb{F}_3$$

•
$$S = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$egin{aligned} (2,2)-(0,1)&=(2,1)\in S\ \Rightarrow\ \{(2,2),(0,1)\}\in E(\Gamma)\ (1,2)-(1,1)&=(0,1)
otin S \end{aligned}$$

æ

Example:
$$\Gamma = Cay(V, S)$$

•
$$V = \mathbb{F}_3 \oplus \mathbb{F}_3$$

•
$$S = \{(1,1), (1,2), (2,1), (2,2)\}$$

æ

Example:
$$\Gamma = Cay(V, S)$$

• $V = \mathbb{F}_3 \oplus \mathbb{F}_3$
• $S = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

<ロト <問ト < 目と < 目と

$$\begin{array}{l} (2,2)-(0,1)=(2,1)\in S \ \Rightarrow \ \{(2,2),(0,1)\}\in E(\Gamma) \\ (1,2)-(1,1)=(0,1)\notin S \ \Rightarrow \ \{(1,2),(1,1)\}\notin E(\Gamma) \end{array}$$

æ

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

イロト イ部ト イヨト イヨト 一日

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

• $V(\Gamma_N)$ = set of *N*-orbits in $V(\Gamma)$

(日)

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

- $V(\Gamma_N) = \text{set of } N \text{-orbits in } V(\Gamma)$
- $\{O_1, O_2\} \in E(\Gamma_N) \Leftrightarrow$

(日)

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

•
$$V(\Gamma_N)$$
 = set of *N*-orbits in $V(\Gamma)$

• $\{O_1, O_2\} \in E(\Gamma_N) \Leftrightarrow \exists u_1 \in O_1, u_2 \in O_2 \text{ s.t. } \{u_1, u_2\} \in E(\Gamma)$

イロト イ団ト イヨト イヨト 二日

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

•
$$V(\Gamma_N) = \text{set of } N \text{-orbits in } V(\Gamma)$$

•
$$\{O_1, O_2\} \in E(\Gamma_N) \Leftrightarrow \exists u_1 \in O_1, u_2 \in O_2 \text{ s.t. } \{u_1, u_2\} \in E(\Gamma)$$

Some properties:

• diam(Γ_N) \leq diam(Γ)

(日)

Let $N \trianglelefteq G \le Aut(\Gamma)$. *G*-normal quotient Γ_N :

•
$$V(\Gamma_N) = \text{set of } N \text{-orbits in } V(\Gamma)$$

•
$$\{O_1, O_2\} \in E(\Gamma_N) \Leftrightarrow \exists u_1 \in O_1, u_2 \in O_2 \text{ s.t. } \{u_1, u_2\} \in E(\Gamma)$$

Some properties:

- diam(Γ_N) \leq diam(Γ)
- Γ connected $\Rightarrow \Gamma_N$ connected
- Γ *G*-vertex-transitive $\Rightarrow \Gamma_N G/N$ -vertex-transitive
- Γ *G*-arc-transitive $\Rightarrow \Gamma_N G/N$ -arc-transitive

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad V = \mathbb{F}_3 \oplus \mathbb{F}_3, \quad S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & N := \text{translations by elements } \mathbb{F}_3 \oplus \{0_V\} \\ & N \triangleleft G \leq \mathsf{Aut}(\Gamma) \end{split}$$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad V = \mathbb{F}_3 \oplus \mathbb{F}_3, \quad S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & N := \text{translations by elements } \mathbb{F}_3 \oplus \{0_V\} \\ & N \triangleleft G \leq \mathsf{Aut}(\Gamma) \end{split}$$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad V = \mathbb{F}_3 \oplus \mathbb{F}_3, \quad S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & N := \text{translations by elements } \mathbb{F}_3 \oplus \{0_V\} \\ & N \triangleleft G \leq \mathsf{Aut}(\Gamma) \end{split}$$

 $\Gamma_N \cong$ complete graph of order 3

Normal quotient reduction:

proper normal quotients are trivial proper normal quotients are complete or empty

Definition

Γ is *G*-quotient-complete if:

Dacaymat J.M.T. (UP Diliman)

Image: A match a ma

Definition

- Γ is *G*-quotient-complete if:
 - \exists at least one proper normal quotient Γ_N that is nontrivial and complete, and

< □ > < 同 > < 三</p>

Definition

- Γ is *G*-quotient-complete if:
 - \exists at least one proper normal quotient Γ_N that is nontrivial and complete, and
 - every other proper normal quotient is either complete or has no edges

Definition

- Γ is *G*-quotient-complete if:
 - \exists at least one proper normal quotient Γ_N that is nontrivial and complete, and
 - every other proper normal quotient is either complete or has no edges
- k := no. of proper normal quotients of a quotient-complete graph

 $\Gamma = Cay(V, S), V = \mathbb{F}_3 \oplus \mathbb{F}_3, S = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ G := group of translations of V

∃ >

< 4³ ► <

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \ V = \mathbb{F}_3 \oplus \mathbb{F}_3, \ S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & \text{Four } N \triangleleft G : \text{ translations by } \mathbb{F}_3 \oplus \{0_V\}, \{0_V\} \oplus \mathbb{F}_3, \langle (1,1) \rangle, \text{ and } \langle (1,2) \rangle \end{split}$$

Example

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \ V = \mathbb{F}_3 \oplus \mathbb{F}_3, \ S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & \text{Four } N \triangleleft G \colon \text{translations by } \mathbb{F}_3 \oplus \{0_V\}, \{0_V\} \oplus \mathbb{F}_3, \langle (1,1) \rangle, \text{ and } \langle (1,2) \rangle \end{split}$$

Example

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \ V = \mathbb{F}_3 \oplus \mathbb{F}_3, \ S = \{(1,1), (1,2), (2,1), (2,2)\} \\ & G := \text{group of translations of } V \\ & \text{Four } N \triangleleft G : \text{ translations by } \mathbb{F}_3 \oplus \{0_V\}, \{0_V\} \oplus \mathbb{F}_3, \langle (1,1) \rangle, \text{ and } \langle (1,2) \rangle \end{split}$$

 Γ is quotient-complete with k = 4

Background

Definition

- Γ is *G*-quotient-complete if:
 - \exists at least one proper normal quotient Γ_N that is nontrivial and complete, and
 - every other proper normal quotient is either complete or has no edges
- k := no. of proper normal quotients of a quotient-complete graph

Background

Definition

- Γ is *G*-quotient-complete if:
 - \exists at least one proper normal quotient Γ_N that is nontrivial and complete, and
 - every other proper normal quotient is either complete or has no edges
- k := no. of proper normal quotients of a quotient-complete graph

General problem:

Classify arc-transitive, quotient-complete, diameter-two graphs

<日

<</p>

k := number of proper normal quotients

45th ACC 11 / 22

< ロト < 同ト < ヨト < ヨト

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients \Longrightarrow

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong Cay(V, S)$ for some vector space V and

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$.

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients \Longrightarrow $\Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

45th ACC

12 / 22

•
$$V = U \oplus U$$
, $U = \mathbb{F}_{q}$

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

45th ACC

12 / 22

- $V = U \oplus U$, $U = \mathbb{F}_q$
- $G = T_V \rtimes G_0$.

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

•
$$V = U \oplus U$$
, $U = \mathbb{F}_q$

•
$$G = T_V \rtimes G_0$$
.

•
$$G_0 = \{(h, h) \mid h \in H\}, H \leq GL(U)$$
 transitive on U^*

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

- $V = U \oplus U$, $U = \mathbb{F}_q$
- $G = T_V \rtimes G_0$.
- $G_0 = \{(h, h) \mid h \in H\}, H \leq GL(U)$ transitive on U^*
- S is a G₀-orbit in V,

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

- $V = U \oplus U$, $U = \mathbb{F}_q$
- $G = T_V \rtimes G_0$.
- $G_0 = \{(h, h) \mid h \in H\}, H \leq GL(U)$ transitive on U^*
- S is a G₀-orbit in V, S = -S, $0_V \in S$, $\langle S \rangle = V$

 Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\implies \Gamma \cong Cay(V, S)$ for some vector space V and $G \leq AGL(V)$. In particular:

- $V = U \oplus U$, $U = \mathbb{F}_q$
- $G = T_V \rtimes G_0$.
- $G_0 = \{(h, h) \mid h \in H\}, H \leq GL(U)$ transitive on U^*
- S is a G₀-orbit in V, S = -S, $0_V \in S$, $\langle S \rangle = V$

Unknown: Diameter two Γ when $H \leq \Gamma L_1(q)$.

 $\Gamma L_1(q) = \langle \tau, \hat{\omega} \rangle$, $q = p^d$, τ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\Gamma L_1(q) = \langle au, \hat{\omega}
angle, \ \ q = p^d, \ \ \ au$ is the Frobenius automorphism,

 $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff$

- * 個 * * 注 * * 注 * - 注

 $\Gamma L_1(q) = \langle au, \hat{\omega}
angle, \ \ q = p^d, \ \ au$ is the Frobenius automorphism,

 $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle$ with $c, e, s \in \mathbb{Z}$ satisfying

- 4 母 ト 4 臣 ト 4 臣 - の 9 9 9

 $\Gamma L_1(q) = \langle \tau, \hat{\omega} \rangle$, $q = p^d$, τ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle$ with $c, e, s \in \mathbb{Z}$ satisfying

F1.
$$c > 0$$
 and $c \mid p^d - 1$,

F2.
$$s > 0$$
 and $s \mid d$, and

F3.
$$0 \le e < c$$
 and $c \mid e(p^d - 1)/(p^s - 1)$.

F4.
$$e > 0$$
 and $c \mid e(p^{cs} - 1)/(p^s - 1)$, and

F5. if
$$1 < c' < c$$
 then $c \nmid e(p^{c's} - 1)/(p^s - 1)$.

▲□▶▲□▶▲□▶▲□▶ = つくで

 $\Gamma L_1(q) = \langle au, \hat{\omega}
angle, \ \ q = p^d, \ \ au$ is the Frobenius automorphism,

 $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle$ with $c, e, s \in \mathbb{Z}$ satisfying

 $\Gamma L_1(q) = \langle au, \hat{\omega}
angle, \ \ q = p^d, \ \ au$ is the Frobenius automorphism,

 $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle$ with $c, e, s \in \mathbb{Z}$ satisfying either (c, e, s) = (1, 0, s) with $s \mid d$,

 $\Gamma L_1(q) = \langle au, \hat{\omega}
angle, \ \ q = p^d, \ \ \ au$ is the Frobenius automorphism,

 $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

 $H \leq \Gamma L_1(p^d)$ is transitive on $\mathbb{F}_q^* \iff H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle$ with $c, e, s \in \mathbb{Z}$ satisfying either (c, e, s) = (1, 0, s) with $s \mid d$, or all of the following:

- f1. c > 1,
- f2. cs | d,
- f3. 0 < e < c and gcd(c, e) = 1,

f4. $p^{s} \equiv 1 \pmod{d'}$ for every prime divisor d' of c, and

f5. $p \equiv 1 \pmod{4}$ whenever $4 \mid c$ and s is odd.

3

(日)

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

Dacaymat J.M.T. (UP Diliman)

45th ACC 15 / 22

イロト イヨト イヨト -

3

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\Gamma = \mathsf{Cay}(V, S), \quad G = T_V \rtimes G_0, \quad S \text{ a } G_0 ext{-orbit}$$

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$egin{aligned} & \Gamma = \mathsf{Cay}(V,S), \quad G = T_V
times G_0, \quad S ext{ a } G_0 ext{-orbit } V & = \mathbb{F}_q \oplus \mathbb{F}_q, \end{aligned}$$

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = T_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \end{split}$$

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \mathsf{\Gamma} = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes \mathcal{G}_0, \quad S \text{ a } \mathcal{G}_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{\mathcal{G}_0} \end{split}$$

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{G_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq \operatorname{diam}(\Gamma) \leq 4$

(日)

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \mathsf{\Gamma} = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes \mathcal{G}_0, \quad S \text{ a } \mathcal{G}_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{\mathcal{G}_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq \operatorname{diam}(\Gamma) \leq 4$

Sketch of proof:

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \mathsf{\Gamma} = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes \mathcal{G}_0, \quad S \text{ a } \mathcal{G}_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{\mathcal{G}_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq \operatorname{diam}(\Gamma) \leq 4$

Sketch of proof:

• Γ is connected $\iff \lambda \notin Fix(\langle \tau^s \rangle)$

イロト 不得 トイヨト イヨト

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{G_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq \operatorname{diam}(\Gamma) \leq 4$

Sketch of proof:

• Γ is connected $\iff \lambda \notin Fix(\langle \tau^s \rangle)$

•
$$(c, e, s) = (1, 0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma) = 2$$

イロト 不得 トイヨト イヨト

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{G_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq diam(\Gamma) \leq 4$

Sketch of proof:

- Γ is connected $\iff \lambda \notin \mathsf{Fix}(\langle \tau^s \rangle)$
- $(c, e, s) = (1, 0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma) = 2$
- If $\lambda \notin Fix \langle \tau^s \rangle$ and (c, e, s) satisfies f1 to f5:

イロト イポト イヨト イヨト

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{G_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq diam(\Gamma) \leq 4$

Sketch of proof:

- Γ is connected $\iff \lambda \notin \mathsf{Fix}(\langle \tau^s \rangle)$
- $(c, e, s) = (1, 0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma) = 2$
- If $\lambda \notin Fix \langle \tau^s \rangle$ and (c, e, s) satisfies f1 to f5:
 - $S \neq V^* \Rightarrow \operatorname{diam}(\Gamma) \geq 2$

イロト イポト イヨト イヨト 二日

 Γ *G*-arc-transitive, *G*-quotient-complete, $k \geq 3$, $H \leq \Gamma L_1(q)$

$$\begin{split} & \Gamma = \mathsf{Cay}(V,S), \quad G = \mathcal{T}_V \rtimes G_0, \quad S \text{ a } G_0\text{-orbit} \\ & V = \mathbb{F}_q \oplus \mathbb{F}_q, \quad H = \langle \hat{\omega}^c, \hat{\omega}^e \tau^s \rangle, \quad S = (1,\lambda)^{G_0} \end{split}$$

Theorem (Main Result 1).

 $2 \leq diam(\Gamma) \leq 4$

Sketch of proof:

• Γ is connected $\iff \lambda \notin \mathsf{Fix}(\langle \tau^s \rangle)$

•
$$(c, e, s) = (1, 0, s), s \mid d \Rightarrow \mathsf{diam}(\Gamma) = 2$$

• If $\lambda \notin Fix \langle \tau^s \rangle$ and (c, e, s) satisfies f1 to f5:

•
$$S \neq V^* \Rightarrow \operatorname{diam}(\Gamma) \geq 2$$

• $V \subseteq S + S + S + S \Rightarrow \operatorname{diam}(\Gamma) \leq 4$

イロト イポト イヨト イヨト 一日

Open problem: sufficient conditions to have diam(Γ) = 2

Ξ.

イロト イポト イヨト イヨト

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

$$q=81,~H=\left\langle \hat{\omega}^{2},\hat{\omega} au
ight
angle .$$

イロト イヨト イヨト イヨト

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

$$q=$$
 81, $H=\left\langle \hat{\omega}^{2},\hat{\omega} au
ight
angle$. $\Gamma= ext{Cay}(V,S),\ S=(1,\lambda)^{G_{0}}$ is:

イロト 不得 トイヨト イヨト

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

• disconnected, if $\lambda \in \{1,2\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

- disconnected, if $\lambda \in \{1,2\}$
- diameter 4, if $\lambda \in \{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\}$

▲□▶▲□▶▲□▶▲□▶ = つくで

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

$$q=$$
 81, $H=\left\langle \hat{\omega}^{2},\hat{\omega} au
ight
angle$. $\Gamma=$ Cay $(V,S),\ S=(1,\lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in \{1,2\}$
- diameter 4, if $\lambda \in \{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\}$
- diameter 3, if $\lambda \in \{\omega, \omega^3, \omega^4, \omega^{12}, \omega^{13}, \omega^{31}, \omega^{41}, \omega^{43}, \omega^{44}, \omega^{52}, \omega^{53}, \omega^{71}\}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Open problem: sufficient conditions to have diam(Γ) = 2 Appears to depend on $S = (1, \lambda)^{G_0}$.

Example.

$$q=$$
 81, $H=\left\langle \hat{\omega}^{2},\hat{\omega} au
ight
angle$. $\Gamma=$ Cay $(V,S),\ S=(1,\lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in \{1,2\}$
- diameter 4, if $\lambda \in \{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\}$
- diameter 3, if
 λ ∈ {ω, ω³, ω⁴, ω¹², ω¹³, ω³¹, ω⁴¹, ω⁴³, ω⁴⁴, ω⁵², ω⁵³, ω⁷¹}
 diameter 2, if λ ∈ {ω², ω⁵, ω⁶, ...} (24 graphs)

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

k := number of proper normal quotients

45th ACC 17 / 22

< ロト < 同ト < ヨト < ヨト

Some *G*-arc-transitive, *G*-quotient-complete graphs with k = 1 or 2:

→ Ξ →

Image: A match a ma

Problem 2

Some *G*-arc-transitive, *G*-quotient-complete graphs with k = 1 or 2:

• $K_m[\overline{K_n}]$, the lexicographic product of complete graph K_m and empty graph $\overline{K_n}$ has k = 1

Problem 2

Some *G*-arc-transitive, *G*-quotient-complete graphs with k = 1 or 2:

- K_m[K_n], the lexicographic product of complete graph K_m and empty graph K_n has k = 1
- 2 $K_m \times K_n$, the direct product of complete graphs K_m and K_n has k = 2

Problem 2

Some *G*-arc-transitive, *G*-quotient-complete graphs with k = 1 or 2:

- K_m[K_n], the lexicographic product of complete graph K_m and empty graph K_n has k = 1
- **2** $K_m \times K_n$, the direct product of complete graphs K_m and K_n has k = 2
- (Amarra, 2018) Some latin square graphs from Cayley table of elementary abelian groups has k = 1 or 2

Let q be a prime power, $r \mid q - 1$,

Let q be a prime power, $r \mid q-1$, $\Gamma = Cay(V, S)$

Let q be a prime power, $r \mid q-1$, $\Gamma = Cay(V, S)$

 $V = \mathbb{F}_q \oplus \mathbb{F}_q$,

Let q be a prime power, $r \mid q-1$, $\Gamma = Cay(V, S)$

 $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) : \alpha\beta \text{ is a nonzero perfect rth power}\}$

Let q be a prime power, $r \mid q-1$, $\Gamma = Cay(V, S)$

 $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) : \alpha\beta \text{ is a nonzero perfect rth power}\}$

$$G = T_V \rtimes G_0, \quad G_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : ab \text{ is a nonzero perfect rth power} \right\}$$

Let q be a prime power, $r \mid q - 1$, $\Gamma = Cay(V, S)$

 $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) : \alpha\beta$ is a nonzero perfect rth power $\}$

$$G = T_V \rtimes G_0, \quad G_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : ab \text{ is a nonzero perfect rth power} \right\}$$

Theorem.

 Γ is G-arc-transitive and G-quotient-complete with k = 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Let q be a prime power, $r \mid q-1$, $\Gamma = Cay(V, S)$

 $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) : \alpha\beta$ is a nonzero perfect rth power $\}$

$$G = T_V \rtimes G_0, \quad G_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : ab \text{ is a nonzero perfect rth power} \right\}$$

Theorem.

 Γ is G-arc-transitive and G-quotient-complete with k = 2

- N_1 : translations by elements of $\mathbb{F}_q \oplus \{0\}$
- N_2 : translations by elements of $\{0\} \oplus \mathbb{F}_q$

▲□▶▲□▶▲□▶▲□▶ = つくで

Theorem.

3

20 / 22

イロト イヨト イヨト イヨト

45th ACC

Dacaymat J.M.T. (UP Diliman)

Theorem.

 $\[\]$ is connected \Leftrightarrow $(q, r) \notin \{(2, 1), (3, 2)\}$

Theorem (Main Result 2).							
	r	q	diam(Γ)				
-	1	≥ 3	2				
	2	≥ 5	2				
	$3 \le r < q-1$	≥ 5	3 or 4				
	$3 \le r = q - 1$	\geq 5	2 or 3				

イロト 不得 トイヨト イヨト

Theorem.

Theorem (Main Result 2).									
	r	q	$diam(\Gamma)$						
	1	\geq 3	2						
	2	\geq 5	2						
	$3 \le r < q-1$	\geq 5	3 or 4	which have					
	$3 \le r = q - 1$	\geq 5	2 or 3	$diam(\Gamma)=2?$					

 $q = p^d$ prime power, $r \mid q - 1$, $\Gamma = Cay(V, S)$, $G = T_V \rtimes G_0$, $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) \mid \alpha\beta \text{ is a nonzero perfect rth power}\}$

 $q = p^d$ prime power, $r \mid q - 1$, $\Gamma = Cay(V, S)$, $G = T_V \rtimes G_0$, $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) \mid \alpha\beta \text{ is a nonzero perfect rth power}\}$

Theorem.

Let $q \ge 5$, $r \ge 3$. diam(Γ) = 2 whenever:

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

 $q = p^d$ prime power, $r \mid q - 1$, $\Gamma = Cay(V, S)$, $G = T_V \rtimes G_0$, $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) \mid \alpha\beta \text{ is a nonzero perfect rth power}\}$

Theorem.

Let $q \ge 5$, $r \ge 3$. diam(Γ) = 2 whenever:

1
$$q > r^4$$
; or

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

 $q = p^d$ prime power, $r \mid q - 1$, $\Gamma = \text{Cay}(V, S)$, $G = T_V \rtimes G_0$, $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) \mid \alpha\beta \text{ is a nonzero perfect rth power}\}$

Theorem.

Let $q \ge 5$, $r \ge 3$. diam $(\Gamma) = 2$ whenever:

1
$$q > r^4$$
; or

2
$$p = 2$$
 and $\forall n \in \{0, \dots, r-1\} \exists \gamma \in \langle \omega^r \rangle \omega^n$ s.t. $\operatorname{Tr}(\gamma) = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

 $q = p^d$ prime power, $r \mid q - 1$, $\Gamma = \text{Cay}(V, S)$, $G = T_V \rtimes G_0$, $V = \mathbb{F}_q \oplus \mathbb{F}_q$, $S = \{(\alpha, \beta) \mid \alpha\beta \text{ is a nonzero perfect rth power}\}$

Theorem.

Let $q \ge 5$, $r \ge 3$. diam(Γ) = 2 whenever:

•
$$q > r^4$$
; or

2
$$p = 2$$
 and $\forall n \in \{0, \dots, r-1\} \exists \gamma \in \langle \omega^r \rangle \, \omega^n \text{ s.t. } \mathsf{Tr}(\gamma) = 0$

Corollary

If $r \leq d$ then diam $(\Gamma) = 2$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

References

- Amarra, C., Giudici, M., and Praeger, C. E. (2012). Quotient-complete arc-transitive graphs. *European Journal of Combinatorics*, 33:1857-1881
- Amarra, C., (2018). Quotient-complete arc-transitive latin square graphs from groups. Graphs and Combinatorics, 34:1651-1669.
- Biggs, N. (1993). Algebraic Graph Theory. Cambridge University Press, London.
- De Vera, H. F. (2021). Quotient-complete arc-transitive graphs associated with the general semilinear group of degree one. M.Sc. thesis, University of the Philippines Diliman.
- Dixon, J. D. and Mortimer, B. (1996). Permutation Groups. Springer-Science/Business Media, LLC, New York.
- Li, C. H., Lim, T. K., and Praeger C. E. (2009). Homogeneous factorisations of complete graphs with edge-transitive factors. Journal of Algebraic Combinatorics, 29:107-132.

イロト 不得 トイヨト イヨト

45th ACC