Diameter of some families of quotient-complete, arc-transitive graphs

John Mel T. Dacaymat
Carmen Amarra, Joseph Damasco

University of the Philippines Diliman

45th ACC

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ automorphism of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ automorphism of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

$$
\text { Let } G \leq \operatorname{Aut}(\Gamma)
$$

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ automorphism of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

$$
\text { Let } G \leq \operatorname{Aut}(\Gamma) . \Gamma \text { is }
$$

G-vertex-transitive: G is transitive on $V(\Gamma)$

Preliminaries

Given graph $\Gamma=(V(\Gamma), E(\Gamma))$

- $E(\Gamma) \subseteq$ 2-subsets of $V(\Gamma)$
distance between two vertices: number of edges in shortest path diameter of Γ : largest distance between two vertices in Γ automorphism of Γ : permutation on $V(\Gamma)$ preserving $E(\Gamma)$

$$
\text { Let } G \leq \operatorname{Aut}(\Gamma) . \Gamma \text { is }
$$

G-vertex-transitive: G is transitive on $V(\Gamma)$
G-arc-transitive: G is transitive on ordered pairs of adjacent vertices (arcs)

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

- $V(\Gamma)=V$

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

- $V(\Gamma)=V$
- $E(\Gamma)=\{\{u, v\} \mid u-v \in S\}$

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

- $V(\Gamma)=V$
- $E(\Gamma)=\{\{u, v\} \mid u-v \in S\}$

Some properties:

- $S=$ neighbors of $0 v$

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

- $V(\Gamma)=V$
- $E(\Gamma)=\{\{u, v\} \mid u-v \in S\}$

Some properties:

- $S=$ neighbors of $0 v$
- Γ is connected $\Longleftrightarrow\langle S\rangle=V$

Preliminaries

Given 2-dimensional vector space $V, S \subseteq V^{*}$ such that $S=-S$:
Cayley graph $\Gamma=\operatorname{Cay}(V, S)$:

- $V(\Gamma)=V$
- $E(\Gamma)=\{\{u, v\} \mid u-v \in S\}$

Some properties:

- $S=$ neighbors of $0 v$
- Γ is connected $\Longleftrightarrow\langle S\rangle=V$
- $\operatorname{diam}(\Gamma) \leq n \Longleftrightarrow V \subseteq S \cup(S+S) \cup \ldots \cup \underbrace{(S+S+\ldots+S)}_{n \text { copies }}$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$
$(2,2)-(0,1)=(2,1) \in S$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$
$(2,2)-(0,1)=(2,1) \in S \Rightarrow\{(2,2),(0,1)\} \in E(\Gamma)$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$

$$
\begin{aligned}
& (2,2)-(0,1)=(2,1) \in S \Rightarrow\{(2,2),(0,1)\} \in E(\Gamma) \\
& (1,2)-(1,1)=(0,1) \notin S
\end{aligned}
$$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$

$$
\begin{aligned}
& (2,2)-(0,1)=(2,1) \in S \Rightarrow\{(2,2),(0,1)\} \in E(\Gamma) \\
& (1,2)-(1,1)=(0,1) \notin S \Rightarrow\{(1,2),(1,1)\} \notin E(\Gamma)
\end{aligned}
$$

Preliminaries

Example: $\Gamma=\operatorname{Cay}(V, S)$

- $V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}$
- $S=\{(1,1),(1,2),(2,1),(2,2)\}$

$(2,2)-(0,1)=(2,1) \in S \Rightarrow\{(2,2),(0,1)\} \in E(\Gamma)$
$(1,2)-(1,1)=(0,1) \notin S \Rightarrow\{(1,2),(1,1)\} \notin E(\Gamma)$

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma)$. G-normal quotient Γ_{N} :

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma) . G$-normal quotient Γ_{N} :

- $V\left(\Gamma_{N}\right)=$ set of N-orbits in $V(\Gamma)$

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma) . G$-normal quotient Γ_{N} :

- $V\left(\Gamma_{N}\right)=$ set of N-orbits in $V(\Gamma)$
- $\left\{O_{1}, O_{2}\right\} \in E\left(\Gamma_{N}\right) \Leftrightarrow$

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma)$. G-normal quotient Γ_{N} :

- $V\left(\Gamma_{N}\right)=$ set of N-orbits in $V(\Gamma)$
- $\left\{O_{1}, O_{2}\right\} \in E\left(\Gamma_{N}\right) \Leftrightarrow \exists u_{1} \in O_{1}, u_{2} \in O_{2}$ s.t. $\left\{u_{1}, u_{2}\right\} \in E(\Gamma)$

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma)$. G-normal quotient Γ_{N} :

- $V\left(\Gamma_{N}\right)=$ set of N-orbits in $V(\Gamma)$
- $\left\{O_{1}, O_{2}\right\} \in E\left(\Gamma_{N}\right) \Leftrightarrow \exists u_{1} \in O_{1}, u_{2} \in O_{2}$ s.t. $\left\{u_{1}, u_{2}\right\} \in E(\Gamma)$

Some properties:

- $\operatorname{diam}\left(\Gamma_{N}\right) \leq \operatorname{diam}(\Gamma)$

Preliminaries

Let $N \unlhd G \leq \operatorname{Aut}(\Gamma)$. G-normal quotient Γ_{N} :

- $V\left(\Gamma_{N}\right)=$ set of N-orbits in $V(\Gamma)$
- $\left\{O_{1}, O_{2}\right\} \in E\left(\Gamma_{N}\right) \Leftrightarrow \exists u_{1} \in O_{1}, u_{2} \in O_{2}$ s.t. $\left\{u_{1}, u_{2}\right\} \in E(\Gamma)$

Some properties:

- $\operatorname{diam}\left(\Gamma_{N}\right) \leq \operatorname{diam}(\Gamma)$
- Γ connected $\Rightarrow \Gamma_{N}$ connected
- 「 G-vertex-transitive $\Rightarrow \Gamma_{N} G / N$-vertex-transitive
- ΓG-arc-transitive $\Rightarrow \Gamma_{N} G / N$-arc-transitive

Example

$\Gamma=\operatorname{Cay}(V, S), \quad V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, \quad S=\{(1,1),(1,2),(2,1),(2,2)\}$
$G:=$ group of translations of V
$N:=$ translations by elements $\mathbb{F}_{3} \oplus\{0 v\}$
$N \triangleleft G \leq \operatorname{Aut}(\Gamma)$

Example

$\Gamma=\operatorname{Cay}(V, S), \quad V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, \quad S=\{(1,1),(1,2),(2,1),(2,2)\}$
$G:=$ group of translations of V
$N:=$ translations by elements $\mathbb{F}_{3} \oplus\left\{0_{v}\right\}$
$N \triangleleft G \leq \operatorname{Aut}(\Gamma)$

Example

$\Gamma=\operatorname{Cay}(V, S), \quad V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, \quad S=\{(1,1),(1,2),(2,1),(2,2)\}$
$G:=$ group of translations of V
$N:=$ translations by elements $\mathbb{F}_{3} \oplus\{0 v\}$
$N \triangleleft G \leq \operatorname{Aut}(\Gamma)$

$(0,1)^{N}$

$\Gamma_{N} \cong$ complete graph of order 3

Background

Normal quotient reduction:

Background

Definition

Γ is G-quotient-complete if:

Background

Definition

Γ is G-quotient-complete if:

- \exists at least one proper normal quotient Γ_{N} that is nontrivial and complete, and

Background

Definition

Γ is G-quotient-complete if:

- \exists at least one proper normal quotient Γ_{N} that is nontrivial and complete, and
- every other proper normal quotient is either complete or has no edges

Background

Definition

Γ is G-quotient-complete if:

- \exists at least one proper normal quotient Γ_{N} that is nontrivial and complete, and
- every other proper normal quotient is either complete or has no edges
$k:=$ no. of proper normal quotients of a quotient-complete graph

Example

$$
\Gamma=\operatorname{Cay}(V, S), V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, S=\{(1,1),(1,2),(2,1),(2,2)\}
$$

$G:=$ group of translations of V

Example

$$
\Gamma=\operatorname{Cay}(V, S), V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, S=\{(1,1),(1,2),(2,1),(2,2)\}
$$

$G:=$ group of translations of V
Four $N \triangleleft G$: translations by $\mathbb{F}_{3} \oplus\{0 v\},\{0 v\} \oplus \mathbb{F}_{3},\langle(1,1)\rangle$, and $\langle(1,2)\rangle$
Γ :

Example

$$
\Gamma=\operatorname{Cay}(V, S), V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, S=\{(1,1),(1,2),(2,1),(2,2)\}
$$

$G:=$ group of translations of V
Four $N \triangleleft G$: translations by $\mathbb{F}_{3} \oplus\{0 v\},\{0 v\} \oplus \mathbb{F}_{3},\langle(1,1)\rangle$, and $\langle(1,2)\rangle$
Γ :

Γ_{N} :

$(2,2)$
$(1,0)$

$(0,2)$

Example

$$
\Gamma=\operatorname{Cay}(V, S), V=\mathbb{F}_{3} \oplus \mathbb{F}_{3}, S=\{(1,1),(1,2),(2,1),(2,2)\}
$$

$G:=$ group of translations of V
Four $N \triangleleft G$: translations by $\mathbb{F}_{3} \oplus\{0 v\},\{0 v\} \oplus \mathbb{F}_{3},\langle(1,1)\rangle$, and $\langle(1,2)\rangle$

「:

$\Gamma_{N}:$

Γ is quotient-complete with $k=4$

Background

Definition

Γ is G-quotient-complete if:

- \exists at least one proper normal quotient Γ_{N} that is nontrivial and complete, and
- every other proper normal quotient is either complete or has no edges
$k:=$ no. of proper normal quotients of a quotient-complete graph

Background

Definition

Γ is G-quotient-complete if:

- \exists at least one proper normal quotient Γ_{N} that is nontrivial and complete, and
- every other proper normal quotient is either complete or has no edges
$k:=$ no. of proper normal quotients of a quotient-complete graph

General problem:

Classify arc-transitive, quotient-complete, diameter-two graphs

Classification status

$$
\begin{array}{|c}
\hline k \geq 3: H \leq G L(V) \\
\text { Case } H \not \leq \Gamma L_{1}(q):(\text { Amarra, Giudici, Praeger, 2012) } \\
\text { Case } H \leq \Gamma L_{1}(q):(\text { De Vera, MSc Thesis 2021) }
\end{array} \quad \begin{gathered}
\text { Problem } 1 \\
\checkmark \text { diam 2, } H \not \leq \Gamma L_{1}(q) \\
? \text { diam 2, } H \leq \Gamma L_{1}(q)
\end{gathered}
$$

Quotient-complete

 arc-transitive 「

$$
k:=\text { number of proper normal quotients }
$$

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients \Longrightarrow

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \mathrm{AGL}(V)$.

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \operatorname{AGL}(V)$. In particular:

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \mathrm{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \mathrm{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$
- $G=T_{V} \rtimes G_{0}$.

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \mathrm{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$
- $G=T_{V} \rtimes G_{0}$.
- $G_{0}=\{(h, h) \mid h \in H\}, H \leq G L(U)$ transitive on U^{*}

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \operatorname{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$
- $G=T_{V} \rtimes G_{0}$.
- $G_{0}=\{(h, h) \mid h \in H\}, H \leq G L(U)$ transitive on U^{*}
- S is a G_{0}-orbit in V,

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \operatorname{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$
- $G=T_{V} \rtimes G_{0}$.
- $G_{0}=\{(h, h) \mid h \in H\}, H \leq G L(U)$ transitive on U^{*}
- S is a G_{0}-orbit in $V, S=-S, 0_{V} \in S,\langle S\rangle=V$

Quotient-complete, arc-transitive, $k \geq 3$

Theorem [Amarra, Giudici, Praeger, 2012].

Γ is G-arc-transitive, G-quotient-complete, with at least 3 nontrivial complete G-normal quotients $\Longrightarrow \Gamma \cong \operatorname{Cay}(V, S)$ for some vector space V and $G \leq \operatorname{AGL}(V)$. In particular:

- $V=U \oplus U, U=\mathbb{F}_{q}$
- $G=T_{V} \rtimes G_{0}$.
- $G_{0}=\{(h, h) \mid h \in H\}, H \leq G L(U)$ transitive on U^{*}
- S is a G_{0}-orbit in $V, S=-S, 0_{V} \in S,\langle S\rangle=V$

Unknown: Diameter two Γ when $H \leq \Gamma L_{1}(q)$.

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow$

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle$ with $c, e, s \in \mathbb{Z}$ satisfying

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Theorem [Foulser, 1964], [Li, Lim, Praeger 2009].

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle$ with $c, e, s \in \mathbb{Z}$ satisfying
F1. $c>0$ and $c \mid p^{d}-1$,
F2. $s>0$ and $s \mid d$, and
F3. $0 \leq e<c$ and $c \mid e\left(p^{d}-1\right) /\left(p^{s}-1\right)$.
F4. $e>0$ and $c \mid e\left(p^{c s}-1\right) /\left(p^{s}-1\right)$, and
F5. if $1<c^{\prime}<c$ then $c \nmid e\left(p^{c^{\prime} s}-1\right) /\left(p^{s}-1\right)$.

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle$ with $c, e, s \in \mathbb{Z}$ satisfying

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle$ with $c, e, s \in \mathbb{Z}$ satisfying either $(c, e, s)=(1,0, s)$ with $s \mid d$,

Quotient-complete, arc-transitive, $k \geq 3$

$\Gamma L_{1}(q)=\langle\tau, \hat{\omega}\rangle, \quad q=p^{d}, \quad \tau$ is the Frobenius automorphism, $\hat{\omega}$ is multiplication by primitive ω

Proposition (De Vera, MSc Thesis 2021).

$H \leq \Gamma L_{1}\left(p^{d}\right)$ is transitive on $\mathbb{F}_{q}^{*} \Longleftrightarrow H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle$ with $c, e, s \in \mathbb{Z}$ satisfying either $(c, e, s)=(1,0, s)$ with $s \mid d$, or all of the following:
f1. $c>1$,
f2. $c s \mid d$,
f3. $0<e<c$ and $\operatorname{gcd}(c, e)=1$,
f4. $p^{s} \equiv 1\left(\bmod d^{\prime}\right)$ for every prime divisor d^{\prime} of c, and
f5. $p \equiv 1(\bmod 4)$ whenever $4 \mid c$ and s is odd.

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}, \quad S \text { a } G_{0} \text {-orbit }
$$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{aligned}
& \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}, \quad S \text { a } G_{0} \text {-orbit } \\
& V=\mathbb{F}_{q} \oplus \mathbb{F}_{q},
\end{aligned}
$$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{aligned}
& \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}, \quad S \text { a } G_{0} \text {-orbit } \\
& V=\mathbb{F}_{\boldsymbol{q}} \oplus \mathbb{F}_{q}, \quad H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle,
\end{aligned}
$$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{aligned}
& \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}, \quad S \text { a } G_{0} \text {-orbit } \\
& V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle, \quad S=(1, \lambda)^{G_{0}}
\end{aligned}
$$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0}, \\
V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle, \quad S=(1, \lambda)^{G_{0}}
\end{array}
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0},
\end{array} \quad S \text { a } G_{0} \text {-orbit }{ }^{(1, \lambda)^{G_{0}}}
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0},
\end{array} \quad S \text { a } G_{0} \text {-orbit }{ }^{(1, \lambda)^{G_{0}}}
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

- Γ is connected $\Longleftrightarrow \lambda \notin \operatorname{Fix}\left(\left\langle\tau^{s}\right\rangle\right)$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{aligned}
& \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}, \quad S \text { a } G_{0} \text {-orbit } \\
& V=\mathbb{F}_{\boldsymbol{q}} \oplus \mathbb{F}_{q}, \quad H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle, \quad S=(1, \lambda)^{G_{0}}
\end{aligned}
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

- Γ is connected $\Longleftrightarrow \lambda \notin \operatorname{Fix}\left(\left\langle\tau^{s}\right\rangle\right)$
- $(c, e, s)=(1,0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma)=2$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0}, \\
V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, & H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle,
\end{array} \quad S=(1, \lambda)^{G_{0}} \text {-orbit }
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

- Γ is connected $\Longleftrightarrow \lambda \notin \operatorname{Fix}\left(\left\langle\tau^{s}\right\rangle\right)$
- $(c, e, s)=(1,0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma)=2$
- If $\lambda \notin \operatorname{Fix}\left\langle\tau^{s}\right\rangle$ and (c, e, s) satisfies $f 1$ to $f 5$:

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0}, \\
V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, & H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle,
\end{array} \quad S=(1, \lambda)^{G_{0}} \text {-orbit }
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

- Γ is connected $\Longleftrightarrow \lambda \notin \operatorname{Fix}\left(\left\langle\tau^{s}\right\rangle\right)$
- $(c, e, s)=(1,0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma)=2$
- If $\lambda \notin \operatorname{Fix}\left\langle\tau^{s}\right\rangle$ and (c, e, s) satisfies $f 1$ to $f 5$:
- $S \neq V^{*} \Rightarrow \operatorname{diam}(\Gamma) \geq 2$

Results

ΓG-arc-transitive, G-quotient-complete, $k \geq 3, H \leq \Gamma L_{1}(q)$

$$
\begin{array}{ll}
\Gamma=\operatorname{Cay}(V, S), & G=T_{V} \rtimes G_{0}, \\
V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad H=\left\langle\hat{\omega}^{c}, \hat{\omega}^{e} \tau^{s}\right\rangle, \quad S=(1, \lambda)^{G_{0}}
\end{array}
$$

Theorem (Main Result 1).

$2 \leq \operatorname{diam}(\Gamma) \leq 4$
Sketch of proof:

- Γ is connected $\Longleftrightarrow \lambda \notin \operatorname{Fix}\left(\left\langle\tau^{s}\right\rangle\right)$
- $(c, e, s)=(1,0, s), s \mid d \Rightarrow \operatorname{diam}(\Gamma)=2$
- If $\lambda \notin \operatorname{Fix}\left\langle\tau^{s}\right\rangle$ and (c, e, s) satisfies $f 1$ to $f 5$:
- $S \neq V^{*} \Rightarrow \operatorname{diam}(\Gamma) \geq 2$
- $V \subseteq S+S+S+S \Rightarrow \operatorname{diam}(\Gamma) \leq 4$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$$
q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle .
$$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle . \quad \Gamma=\operatorname{Cay}(V, S), S=(1, \lambda)^{G_{0}}$ is:

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle . \quad \Gamma=\operatorname{Cay}(V, S), S=(1, \lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in\{1,2\}$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle . \quad \Gamma=\operatorname{Cay}(V, S), S=(1, \lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in\{1,2\}$
- diameter 4, if $\lambda \in\left\{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\right\}$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle . \quad \Gamma=\operatorname{Cay}(V, S), S=(1, \lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in\{1,2\}$
- diameter 4 , if $\lambda \in\left\{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\right\}$
- diameter 3 , if

$$
\lambda \in\left\{\omega, \omega^{3}, \omega^{4}, \omega^{12}, \omega^{13}, \omega^{31}, \omega^{41}, \omega^{43}, \omega^{44}, \omega^{52}, \omega^{53}, \omega^{71}\right\}
$$

Results

Open problem: sufficient conditions to have $\operatorname{diam}(\Gamma)=2$
Appears to depend on $S=(1, \lambda)^{G_{0}}$.

Example.

$q=81, H=\left\langle\hat{\omega}^{2}, \hat{\omega} \tau\right\rangle . \quad \Gamma=\operatorname{Cay}(V, S), S=(1, \lambda)^{G_{0}}$ is:

- disconnected, if $\lambda \in\{1,2\}$
- diameter 4 , if $\lambda \in\left\{\omega^{10}, \omega^{20}, \omega^{30}, \omega^{50}, \omega^{60}, \omega^{70}\right\}$
- diameter 3 , if

$$
\lambda \in\left\{\omega, \omega^{3}, \omega^{4}, \omega^{12}, \omega^{13}, \omega^{31}, \omega^{41}, \omega^{43}, \omega^{44}, \omega^{52}, \omega^{53}, \omega^{71}\right\}
$$

- diameter 2 , if $\lambda \in\left\{\omega^{2}, \omega^{5}, \omega^{6}, \ldots\right\}$
(24 graphs)

Classification status

Quotient-complete

 arc-transitive 「

$$
k:=\text { number of proper normal quotients }
$$

Problem 2

Some G-arc-transitive, G-quotient-complete graphs with $k=1$ or 2 :

Problem 2

Some G-arc-transitive, G-quotient-complete graphs with $k=1$ or 2 :
(1) $K_{m}\left[\overline{K_{n}}\right]$, the lexicographic product of complete graph K_{m} and empty graph $\overline{K_{n}}$ has $k=1$

Problem 2

Some G-arc-transitive, G-quotient-complete graphs with $k=1$ or 2 :
(1) $K_{m}\left[\overline{K_{n}}\right]$, the lexicographic product of complete graph K_{m} and empty graph $\overline{K_{n}}$ has $k=1$
(2) $K_{m} \times K_{n}$, the direct product of complete graphs K_{m} and K_{n} has $k=2$

Problem 2

Some G-arc-transitive, G-quotient-complete graphs with $k=1$ or 2 :
(1) $K_{m}\left[\overline{K_{n}}\right]$, the lexicographic product of complete graph K_{m} and empty graph $\overline{K_{n}}$ has $k=1$
(2) $K_{m} \times K_{n}$, the direct product of complete graphs K_{m} and K_{n} has $k=2$
(3) Amarra, 2018) Some latin square graphs from Cayley table of elementary abelian groups has $k=1$ or 2

Results

Let q be a prime power, $r \mid q-1$,

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$

$$
V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}
$$

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta): \alpha \beta$ is a nonzero perfect rth power $\}$

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta): \alpha \beta$ is a nonzero perfect rth power $\}$
$G=T_{V} \rtimes G_{0}, \quad G_{0}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a b\right.$ is a nonzero perfect rth power $\}$

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta): \alpha \beta$ is a nonzero perfect rth power $\}$
$G=T_{V} \rtimes G_{0}, \quad G_{0}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a b\right.$ is a nonzero perfect rth power $\}$

Theorem.

Γ is G-arc-transitive and G-quotient-complete with $k=2$

Results

Let q be a prime power, $r \mid q-1, \Gamma=\operatorname{Cay}(V, S)$
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta): \alpha \beta$ is a nonzero perfect rth power $\}$
$G=T_{V} \rtimes G_{0}, \quad G_{0}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a b\right.$ is a nonzero perfect rth power $\}$

Theorem.

Γ is G-arc-transitive and G-quotient-complete with $k=2$
N_{1} : translations by elements of $\mathbb{F}_{\boldsymbol{q}} \oplus\{0\}$
N_{2} : translations by elements of $\{0\} \oplus \mathbb{F}_{q}$

Results

Theorem.

Γ is connected $\Leftrightarrow(q, r) \notin\{(2,1),(3,2)\}$

Results

Theorem.

Γ is connected $\Leftrightarrow(q, r) \notin\{(2,1),(3,2)\}$

Theorem (Main Result 2).

r	q	$\operatorname{diam}(\Gamma)$
1	≥ 3	2
2	≥ 5	2
$3 \leq r<q-1$	≥ 5	3 or 4
$3 \leq r=q-1$	≥ 5	2 or 3

Results

Theorem.

Γ is connected $\Leftrightarrow(q, r) \notin\{(2,1),(3,2)\}$

Theorem (Main Result 2).

r	q	$\operatorname{diam}(\Gamma)$	
1	≥ 3	2	
2	≥ 5	2	
$3 \leq r<q-1$	≥ 5	3 or 4	which have
$3 \leq r=q-1$	≥ 5	2 or 3	$\operatorname{diam}(\Gamma)=2 ?$

Results

$$
\begin{aligned}
& q=p^{d} \text { prime power, } r \mid q-1, \quad \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0} \\
& V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta) \mid \alpha \beta \text { is a nonzero perfect rth power }\}
\end{aligned}
$$

Results

$$
\begin{aligned}
& q=p^{d} \text { prime power, } r \mid q-1, \quad \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0} \\
& V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta) \mid \alpha \beta \text { is a nonzero perfect rth power }\}
\end{aligned}
$$

Theorem.

Let $q \geq 5, r \geq 3$. $\operatorname{diam}(\Gamma)=2$ whenever:

Results

$q=p^{d}$ prime power, $r \mid q-1, \quad \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}$,
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta) \mid \alpha \beta$ is a nonzero perfect rth power $\}$

Theorem.

Let $q \geq 5, r \geq 3$. $\operatorname{diam}(\Gamma)=2$ whenever:
(1) $q>r^{4}$; or

Results

$q=p^{d}$ prime power, $r \mid q-1, \quad \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}$,
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta) \mid \alpha \beta$ is a nonzero perfect rth power $\}$

Theorem.

Let $q \geq 5, r \geq 3$. $\operatorname{diam}(\Gamma)=2$ whenever:
(1) $q>r^{4}$; or
(2) $p=2$ and $\forall n \in\{0, \ldots, r-1\} \exists \gamma \in\left\langle\omega^{r}\right\rangle \omega^{n}$ s.t. $\operatorname{Tr}(\gamma)=0$

Results

$q=p^{d}$ prime power, $r \mid q-1, \quad \Gamma=\operatorname{Cay}(V, S), \quad G=T_{V} \rtimes G_{0}$,
$V=\mathbb{F}_{q} \oplus \mathbb{F}_{q}, \quad S=\{(\alpha, \beta) \mid \alpha \beta$ is a nonzero perfect rth power $\}$

Theorem.

Let $q \geq 5, r \geq 3$. $\operatorname{diam}(\Gamma)=2$ whenever:
(1) $q>r^{4}$; or
(2) $p=2$ and $\forall n \in\{0, \ldots, r-1\} \exists \gamma \in\left\langle\omega^{r}\right\rangle \omega^{n}$ s.t. $\operatorname{Tr}(\gamma)=0$

Corollary

If $r \leq d$ then $\operatorname{diam}(\Gamma)=2$.

References

- Amarra, C., Giudici, M., and Praeger, C. E. (2012). Quotient-complete arc-transitive graphs. European Journal of Combinatorics, 33:1857-1881
- Amarra, C., (2018). Quotient-complete arc-transitive latin square graphs from groups. Graphs and Combinatorics, 34:1651-1669.
- Biggs, N. (1993). Algebraic Graph Theory. Cambridge University Press, London.
- De Vera, H. F. (2021). Quotient-complete arc-transitive graphs associated with the general semilinear group of degree one. M.Sc. thesis, University of the Philippines Diliman.
- Dixon, J. D. and Mortimer, B. (1996). Permutation Groups. Springer-Science/Business Media, LLC, New York.
- Li, C. H., Lim, T. K., and Praeger C. E. (2009). Homogeneous factorisations of complete graphs with edge-transitive factors. Journal of Algebraic Combinatorics, 29:107-132.

