The Hamilton decomposition problem

45th Australasian Combinatorics Conference

Sara Davies (née Herke)

The University OF QuEENSLAND
AUSTRALIA

A survey talk, including some joint work with:
Darryn Bryant, Barbara Maenhaut, Ben Smith, Hao Chuien Hang, Bridget Webb

Outline for this talk

- Definitions and historical context
- A brief overview of the Hamiltonian problem
- Hamilton decompositions of...
- Complete multipartite graphs
- Vertex-transitive graphs
- Cayley graphs and infinite Cayley graphs
- Graph products
- Line graphs

Hamilton cycles and paths

A Hamilton cycle is a cycle that contains every vertex of a graph. If a graph is Hamiltonian if it has a Hamilton cycle.

Determining whether a general graph is Hamiltonian
 is an NP-complete problem.

A Hamilton path is a path that contains every vertex of a graph.

Historical context

The name Hamilton acknowledges mathematician Sir William Rowan Hamilton who introduced the Icosian Game in 1857.

https://www.puzzlemuseum.com/

Kirkman (1855) Given the graph of a polyhedron, can one always find a circuit that passes through each vertex exactly once?

50	11	24	63	14	37	26	35
23	62	51	12	25	34	15	38
10	49	64	21	40	13	36	27
61	22	9	52	33	28	39	16
48	7	60	1	20	41	54	29
59	4	45	8	53	32	17	42
6	47	2	57	44	19	30	55
3	58	5	46	31	56	43	18

Decompositions

A decomposition of a graph G is a set $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$ of edge-disjoint subgraphs of G such that $E\left(H_{1}\right) \cup \mathrm{E}\left(H_{2}\right) \cup \ldots \cup \mathrm{E}\left(H_{t}\right)=\mathrm{E}(G)$.

A Hamilton decomposition is a decomposition into Hamilton cycles.
A Hamilton path decomposition is a decomposition into Hamilton paths.

Decompositions of complete graphs

Les jeux de demoiselles.
mètre (${ }^{1}$). Nous prendrons comme première ronde les enfants dans l'ordre
dans
I.

ABCDEFGHIJKA,

qui représente l'une quelconque des permutations circulaires de $2 n+1$ lettres (${ }^{2}$.)
Cela posé, pour obtenir une seconde disposition des enfants,

nous considérerons l'ensemble des lignes droites de la figure comme une aiguille mobile que nous ferons tourner d'une division dans
(i) Dans le problème actuel, il ne faut pas tenir compte de la lettre L
dans la $f i g .84$. dans la fig. 84.
le nombre des. permutations circulaires de q lettres cst égal au produit des $q-1$ premiers nombres entiers. (T. I, p. $196,2^{\circ}$ edition).

Image from

Lucas, Récréations mathématiques (1892) vol 2

Walecki (1892)

K_{n} decomposes into Hamilton cycles $\Leftrightarrow n$ is odd.
K_{n} decomposes into Hamilton paths $\Leftrightarrow n$ is even.

K_{9} into 4 Hamilton cycles

K_{8} into 4 Hamilton paths

A brief overview of the Hamiltonian problem

Classic results

Dirac's Theorem (1952) If G is a graph of order $n \geq 3$ and minimum degree at least $\frac{n}{2}$ then G is Hamiltonian.

Ore's Theorem (1960) If G is a graph of order $n \geq 3$ and for every pair of non-adjacent vertices u and v, we have $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$, then G is Hamiltonian.

Consider a graph with a non-empty subset of vertices S whose removal results in more than $|S|$ components.

Theorem (Chvátal 1973) Every Hamiltonian graph is 1-tough.

A graph is 1-tough if it does not have such a set.

1-tough but non-Hamiltonian

Vertex-transitive graphs

Conjecture (Lovász 1969): Every finite connected vertex-transitive graph has a Hamilton path.

Conjecture: Every finite connected vertex-transitive graph is Hamiltonian, with 4 nontrivial exceptions.

Thomassen conjectured only finitely many exceptions; Babai conjectured infinitely many.

triangle-replaced Petersen graph

triangle-replaced Coxeter graph

Vertex-transitive graphs

Conjecture (Lovász 1969): Every finite connected vertex-transitive graph has a Hamilton path.

Conjecture: Every finite connected vertex-transitive graph is Hamiltonian, with 4 nontrivial exceptions.

Thomassen conjectured only finitely many exceptions; Babai conjectured infinitely many.
\checkmark Order $p \geq 3$
\checkmark Order $k p$ for $k \leq 4$
\checkmark Order p^{j} for $j \leq 4$
\checkmark Order $p q$
Kneser graphs $K(n, k)$ are Hamiltonian (except Petersen) Except for:

Alspach [1979] Marušič [1988] Kutnar \& Marušič [2008] Marušič [1985] Chen [1996] Zhang [2015] Du, Kutnar and Marušič [2021] Merino et al. [2023+, arXiv]

Cayley graphs

Let $(\mathrm{X},+)$ be a group with identity e and $\mathrm{S} \subseteq X-\{e\}$ be inverse-closed.
The Cayley graph on the group X with connection set S , denoted Cay (X, S), is the graph with vertex set X and edge set $\{\{x, x+s\}: x \in \mathrm{X}, s \in \mathrm{~S}\}$.

Folklore Conjecture

$\operatorname{Cay}\left(\mathbb{Z}_{8},\{ \pm 1, \pm 2\}\right)$

Every finite connected Cayley graph of order at least 3 is Hamiltonian.
$\checkmark \mathrm{X}$ is an abelian group.
\checkmark X has prime power order greater than 2.
$\checkmark \mathrm{X}$ is the dihedral group D n with n even.
\checkmark Almost all Cayley graphs are Hamiltonian.
known by Lovasz [1979]
Witte [1986]
Alspach, Chen, Dean [2010]
Jixiang, Qiongxiang [1996]

Hamilton decompositions

Hamilton decompositions

A Hamilton decomposition is a decomposition into Hamilton cycles.

regular of even degree

If G is regular of odd degree, then a Hamilton decomposition of G is a decomposition into Hamilton cycles and a perfect matching.

regular of odd degree

Complete multipartite graphs

A graph is a complete multipartite graph if its vertices can be partitioned into parts such that two vertices are adjacent if and only if they are from different parts.

Theorem (Laskar and Auerbach 1976)

A complete multipartite graph has a Hamilton decomposition if and only if it is regular of even degree.

Theorem (Bryant, Hang, S.H. 2019)

A complete multipartite graph G with $n>1$ vertices and m edges has a Hamilton path decomposition if and only if $t=\frac{m}{n-1}$ is an integer and $\Delta(G) \leq 2 t$.

General context

Conjecture (Nash-Williams 1971, Jackson 1979)

Every connected k-regular graph of order at most $2 k+1$ has a Hamilton decomposition.
\checkmark Proved for all sufficiently large k
Csaba, Kühn, Lo, Osthus and Treglown [2015]

If a graph has a Hamilton decomposition with \boldsymbol{t} Hamilton cycles, then it is $\mathbf{2 t}$-edge connected.

Theorem (Mader 1971)
Every connected k-regular vertex-transitive graph is k-edge-connected.

Vertex-transitive graphs

Does every connected vertex-transitive graph have a Hamilton decomposition?

Obvious 3-regular exceptions:

Theorem (Bryant and Dean, 2015)

There are infinitely many connected vertex-transitive graphs that have no Hamilton decomposition.

Cayley graphs

Cayley graphs

Alspach's Conjecture (1984)

Every connected $2 k$-regular Cayley graph Cay (X, S) on a finite abeliangroup has a Hamilton decomposition.
\checkmark 2-regular
\checkmark 4-regular
\checkmark 6-regular
$\checkmark \mathrm{X}$ odd order, S is a minimal generating set
$\checkmark \mathrm{X}$ even order, S is a strongly minimal generating set

$\operatorname{Cay}\left(\mathbb{Z}_{8},\{ \pm 1, \pm 2\}\right)$
the graph is a Hamilton cycle Bermond, Favaron, Maheo [1989] many partial results (Dean; Westlund)

Liu [1996]
Liu [2003]

Theorem (Bryant and Dean, 2015)

There exist connected $2 k$-regular Cayley graphs on a finite non-abelian groups that have no Hamilton decomposition.

Cayley graphs

Alspach's Conjecture (1984)

Every connected $2 k$-regular Cayley graph Cay (X, S) on a tinite abelian group has a Hamilton decomposition.

$\operatorname{Cay}\left(\mathbb{Z}_{8},\{ \pm 1, \pm 2\}\right)$

Question:

Does every connected $2 k$-regular Cayley graph on an infinite abelian group have a Hamilton decomposition?

$\operatorname{Cay}(\mathbb{Z}, \pm\{1,2\})$

Infinite Cayley graphs

Alspach's Conjecture (1984)

Every connected $2 k$-regular Cayley graph Cay (X, S) on a tinite abelian group has a Hamilton decomposition.

$\operatorname{Cay}\left(\mathbb{Z}_{8},\{ \pm 1, \pm 2\}\right)$

A Hamilton double-ray is a connected 2-regular spanning subgraph.

Question:

Does every connected $2 k$-regular Cayley graph on an infinite abelian group have a Hamilton decomposition?

$\operatorname{Cay}(\mathbb{Z}, \pm\{1,2\})$

Infinite Cayley graphs

Question:

Does every connected $2 k$-regular Cayley graph on an infinite abelian group have a Hamilton decomposition?

$\operatorname{Cay}(\mathbb{Z}, \pm\{1,2\})$

A Hamilton double-ray is a connected 2-regular spanning subgraph.
A Hamilton decomposition is a decomposition into Hamilton double-rays.

Theorem (Nash-Williams, 1959)

Every connected Cayley graph on a finitely-generated, infinite abelian group has a Hamilton double-ray.
$\Longrightarrow \quad$ Every connected Cayley graph on a finitely-generated infinite abelian group with infinite degree has a Hamilton decomposition.

Infinite Cayley graphs of finite degree

Necessary condition for a decomposition into k Hamilton double-rays:

$$
\operatorname{Cay}(\mathbb{Z}, \pm\{1,2\})
$$

$$
\operatorname{Cay}(\mathbb{Z}, \pm\{1,3\})
$$

not admissible

Each of the Hamilton double-rays uses an odd number of the edges that cross the dotted line.

Infinite analogue of Alspach's conjecture

Open Question: Does every admissible connected $2 k$-regular Cayley graph on an infinite abelian group have a Hamilton decomposition?

$\operatorname{Cay}(\mathbb{Z}, \mathbf{s})$

$\checkmark S=\{a, b\}$
Bryant, S.H., Maenhaut, Webb [2017]
$\checkmark S=\{1,2, c\}$
$\checkmark S=\{1,2, \ldots, k\}$
$\checkmark \mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p-1}, p\right\}$ for $p \leq 23$ an odd prime, $p \nmid a_{i}$
\checkmark some other 6 -regular cases
Gentle, Baldwin, Stephenson (unpublished)

Infinite analogue of Alspach's conjecture

Example: $\operatorname{Cay}(\mathbb{Z}, \pm\{3,5\})$

Infinite analogue of Alspach's conjecture

Open Question: Does every admissible connected $2 k$-regular Cayley graph on an infinite abelian group have a Hamilton decomposition?
$\operatorname{Cay}(\mathbb{Z}, \mathbf{S})$
$\checkmark S=\{a, b\}$
Bryant, S.H., Maenhaut, Webb [2017]
$\checkmark S=\{1,2, c\}$
$\checkmark S=\{1,2, \ldots, k\}$
$\checkmark \mathrm{S}=\left\{a_{1}, a_{2}, \ldots, a_{p-1}, p\right\}$ for $p \leq 23$ an odd prime, $p \nmid a_{i}$
\checkmark some other 6-regular cases Gentle, Baldwin, Stephenson (unpublished)
$\checkmark \operatorname{Cay}\left(\mathbb{Z}^{2}, s\right)$
Erde, Lehner, Pitz [2020]

Theorem (Erde, Lehner, 2022): Every admissible connected 4-regular Cayley graph on an infinite abelian group has a Hamilton decomposition.

Graph products

Cartesian product $G \times H$

$C_{4} \times P_{3}$

Conjecture (Bermond 1978)

If G and H both have Hamilton decompositions, then $G \times H$ has a Hamilton decomposition.

Cartesian product

Conjecture (Bermond 1978)

If G and H both have Hamilton decompositions, then $G \times H$ has a Hamilton decomposition.

$$
\begin{array}{ll}
\checkmark & \mathrm{K}_{n} \times \mathrm{K}_{n} \\
\checkmark & \mathrm{~K}_{n} \times \mathrm{K}_{k} \\
\checkmark & \mathrm{C}_{n} \times \mathrm{C}_{k} \\
\checkmark & \mathrm{C}_{n_{1}} \times \mathrm{C}_{n_{2}} \times \ldots \times \mathrm{C}_{n_{r}}
\end{array}
$$

Myers [1972]

Aubert and Schneider [1981]

Kotzig [1973]

Alspach and Godsil [1985]

Theorem (Stong 1991)

If G and H have Hamilton decompositions into n and m Hamilton cycles, respectively, with $n \leq m$ then $G \times H$ has a Hamilton decomposition if one of the following holds:

- $m \leq 3 n$,
- $|V(G)|$ is even,
- $n \geq 3$,
- $|V(H)| \geq 6\left\lceil\frac{m}{n}\right\rceil-3$

Wreath product* $G[H]$

Replace every vertex u of G with a copy H_{u} of H, and for each edge of $u v$ of G, join each vertex of H_{u} to each vertex of H_{v}.

Wreath product

For which G and H does $G[H]$ have a Hamilton decomposition?
$\checkmark \mathrm{K}_{n}\left[\mathrm{~K}_{k}\right] \cong \mathrm{K}_{n k} \Leftrightarrow$ regular of even degree
$\checkmark \mathrm{K}_{n}\left[\overline{\mathrm{~K}_{k}}\right] \cong \mathrm{K}_{k, k, \ldots, k} \Leftrightarrow$ regular of even degree
$\checkmark \mathrm{C}_{n}\left[\overline{\mathrm{~K}_{k}}\right]$
Bermond [1978], Laskar [1978]
$\checkmark \mathrm{C}_{n}\left[\mathrm{C}_{k}\right]$ where n is odd

Theorem (Baranyai and Szasz 1981)

If G and H both have Hamilton decompositions, then $G[H]$ has a Hamilton decomposition.

Hamilton decomposition $\quad \Rightarrow G$ is regular and connected

Collapsed graph

Decomposition into Hamilton cycles

Connected
4-factorisation

Lemma (Bryant, S.D., Hang 2023+)
Let G be a graph and let H be either K_{k} or \bar{K}_{k}. Then $G[\mathrm{H}]$ has a Hamilton decomposition if and only if $G[\mathrm{H}]^{*}$ has a connected $2 k$-factorisation.

Almost regular edge colourings

almost regular on S

Lemma (Bryant 2016)

If G is a graph with an edge colouring and $S \subseteq \mathrm{~V}(G)$ such that any permutation of S is an automorphism of G, then there exists an edge colouring of G that has the "same properties" and is almost regular on S.

Making the 2-factors connected

Wreath product

Let G be a connected d-regular graph and let H be either K_{k} or \bar{K}_{k} where $k \geq 2$.
Does $\boldsymbol{G}[\mathbf{H}]$ have a Hamilton decomposition whenever it is $2 t$-regular (and $2 t$-edge-connected)?
$\checkmark k \geq d$
$\checkmark \quad X=\mathrm{K}_{k}$ and $k \geq \frac{d+2}{2}$
$\checkmark d$ even, $X=\overline{\mathrm{K}_{k}}$ and $k \geq \frac{d}{2}$
$\checkmark G$ has a 1-factorisation, $X=\overline{\mathrm{K}_{k}}$ and $k \geq \frac{d}{2}$
\checkmark other similar sufficient conditions
$\checkmark d \leq 4$ except possibly $G\left[\overline{K_{2}}\right]$ when G is 3-regular, bridgeless, no 1-factorisation (snark)
? $5 \leq d \leq 7$
We checked well-known snarks and do not know of a counterexample
$X d \geq 8, d \equiv 0(\bmod 4)$ construct $G\left[\overline{K_{2}}\right] 2 d$-regular, $2 d$-edge-connected but non-Hamiltonian

Line graphs

Line graphs

Given a graph G, the line graph of G, denoted $L(G)$, is the graph whose vertices are the edges of G and in which two vertices are adjacent if and only if the corresponding edges of G are adjacent.

If G is k-regular, then $L(G)$ is $(2 k-2)$-regular.

Theorem (Kotzig 1964)

A 3-regular graph G is Hamiltonian if and only if $L(G)$ has a Hamilton decomposition.

Bermond's conjecture

Conjecture (Bermond 1988)

If G has a Hamilton decomposition, then is $L(G)$ has a Hamilton decomposition.
\checkmark 2-regular G
\checkmark 3-regular G
\checkmark 4-regular G
\checkmark 5-regular G
$\checkmark \quad k$-regular bipartite G with k odd
$\checkmark k$-regular G with $k \equiv 0(\bmod 4)$
$L(G)$ is a cycle
$L(G)$ is 4-regular Kotzig [1964]
$L(G)$ is 6-regular Jaeger [1983]
$L(G)$ is 8-regular Pike [1995]
Pike [1995]
Muthasamy and Paulraja [1995]

Theorem (Bryant, Maenhaut, Smith 2015+ *)
If G has a Hamilton decomposition, then is $L(G)$ has a Hamilton decomposition.
*Ben Smith presented a proof of Bermond's conjecture at 39ACCMCC in Brisbane, 2015.

Strengthening Bermond's conjecture

Theorem (Kotzig 1964)

A 3-regular graph G is Hamiltonian if and only if $L(G)$ has a Hamilton decomposition.

$$
G \text { is Hamiltonian } \stackrel{?}{\Rightarrow} L(G) \text { has a Hamilton decomposition }
$$

Theorem (Muthasamy and Paulraja, 1995, and Zahn 1992)
If G is k-regular and Hamiltonian (for k even), then $L(G)$ can be decomposed into Hamilton cycles and a 2-factor.

```
Theorem (Bryant, S.H., Maenhaut, Smith 2020+ *)
If G}\mathrm{ is }k\mathrm{ -regular and Hamiltonian (for }k\mathrm{ even) or contains a Hamiltonian 3-factor (for k odd) then \(L(G)\) has a Hamilton decomposition.
```


Strengthening Bermond's conjecture

Theorem (Bryant, S.H., Maenhaut, Smith 2020+)

If G is k-regular and Hamiltonian (for k even) or contains a Hamiltonian 3-factor (for k odd) then $L(G)$ has a Hamilton decomposition.

Proof idea:

6-regular G
Hamiltonian

Orient the 2 -factors

10-regular $\mathrm{L}(G)$

Strengthening Bermond's conjecture

Theorem (Bryant, S.H., Maenhaut, Smith 2020+)

If G is k-regular and Hamiltonian (for k even) or contains a Hamiltonian 3-factor (for k odd) then $L(G)$ has a Hamilton decomposition.

Proof idea:

6-regular G
Hamiltonian

Orient the 2-factors

10-regular $\mathrm{L}(G)$
Colour edges of the K_{6} with 5 colours so that putting them together gives à Hamilton cycle in each colour

Hamilton fragments

At least one vertex in each component gets an "alternate" Hamilton fragment

Hamiltonicity of G not necessary

Theorem (Bryant, Maenhaut, Smith, 2018)
For each integer $k \geq 4$ there exists a k-regular non-Hamiltonian graph G such that $L(G)$ has a Hamilton decomposition.

Example:

Theorem (Jackson, 1991)

If G is a 3-connected 4-regular graph, then $L(G)$ has a Hamilton decomposition.

47ACC

The University of Queensland 2-6 December, 2024

Thanks for listening!

Summary of some open problems

1. Prove (or disprove) Alspach's conjecture for $k \geq 3$ that every connected $2 k$-regular Cayley graph on a finite abelian group has a Hamilton decomposition.
2. For $k \geq 3$, characterise the connected $2 k$-regular Cayley graphs on infinite abelian groups that have a decomposition into Hamilton double-rays.
3. For every snark G, does $G\left[\overline{K_{2}}\right]$ have a Hamilton decomposition?
4. For $k \geq 4$, characterise the k-regular graphs whose line graph has a Hamilton decomposition.

Regular highly connected graphs

Conjecture (Häggkvist 1976, Bollobás 1978)

Every t-connected k-regular graph of order at most $(t+1) k$ is Hamiltonian.
$\checkmark t=2$
Jackson [1980]
$\checkmark t=3$ when n is sufficiently large
$\checkmark X$ Counterexamples for all $t \geq 4$

Kühn, Lo, Osthus, Staden [2016]
Jung [1984] and Jackson, Li and Zhu [1991]

Conjecture (Häggkvist 1976)

Every 2-connected k-regular bipartite graph of order at most $6 k$ is Hamiltonian.
\checkmark for orders $\leq 6 k-38$

