Proper Minor-Closed Classes of Graphs have Assouad-Nagata Dimension 2

Marc Distel

School of Mathematics, Monash University

This talk is at the intersection of:

This talk is at the intersection of:

- Structural graph theory

This talk is at the intersection of:

- Structural graph theory
- Metric geometry

This talk is at the intersection of:

- Structural graph theory
- Metric geometry

In particular: Treating graphs as metric spaces, and using structural properties to solve metric problems.

Graph minors

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

A class \mathcal{G} is minor-closed if every minor of a graph in \mathcal{G} is also in \mathcal{G}

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

A class \mathcal{G} is minor-closed if every minor of a graph in \mathcal{G} is also in \mathcal{G}, and is proper if \mathcal{G} is not the class of all graphs.

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

A class \mathcal{G} is minor-closed if every minor of a graph in \mathcal{G} is also in \mathcal{G}, and is proper if \mathcal{G} is not the class of all graphs.

Some easy examples:

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

A class \mathcal{G} is minor-closed if every minor of a graph in \mathcal{G} is also in \mathcal{G}, and is proper if \mathcal{G} is not the class of all graphs.

Some easy examples:

- Planar graphs

Graph minors

A graph H is a minor of a graph G if H can be obtained from G with the following operations:

- Edge deletions
- Vertex deletions
- Contractions

A class \mathcal{G} is minor-closed if every minor of a graph in \mathcal{G} is also in \mathcal{G}, and is proper if \mathcal{G} is not the class of all graphs.

Some easy examples:

- Planar graphs
- Linklessly embeddable graphs

Asymptotic and Assouad-Nagata dimension

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n
- Planar graphs have asymptotic and Assouad-Nagata dimension 2 (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n
- Planar graphs have asymptotic and Assouad-Nagata dimension 2 (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Applications:

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n
- Planar graphs have asymptotic and Assouad-Nagata dimension 2 (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Applications:
- Geometric group theory

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n
- Planar graphs have asymptotic and Assouad-Nagata dimension 2 (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Applications:
- Geometric group theory
- Embeddings into Banach spaces

Asymptotic and Assouad-Nagata dimension

- Concepts from metric geometry
- Measures of the large-scale shape of a metric space
- \mathbb{R}^{n} has asymptotic and Assouad-Nagata dimension n
- Planar graphs have asymptotic and Assouad-Nagata dimension 2 (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Applications:
- Geometric group theory
- Embeddings into Banach spaces
- Travelling salesman problem (Erschler and Mitrofanov [2021]) (Assouad-Nagata dimension only)

Asymptotic dimension

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G
- Two vertices in the same part are at distance at most $f(r)$ in G

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G
- Two vertices in the same part are at distance at most $f(r)$ in G

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G
- Two vertices in the same part are at distance at most $f(r)$ in G

We then say that f is an n-dimensional control function for G.

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G
- Two vertices in the same part are at distance at most $f(r)$ in G

We then say that f is an n-dimensional control function for G.
If f is an n-dimensional control function for every graph G in a class \mathcal{G}, we say that f is an n-dimensional control function for \mathcal{G}.

Asymptotic dimension

For a graph G, given some integer $n \geqslant 0$, we want to find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that for every real number $r>0$, we can find a partition \mathcal{P}, and give each part of one $n+1$ colours, such that the following rules hold:

- Two part of the same colour are at distance more than r in G
- Two vertices in the same part are at distance at most $f(r)$ in G

We then say that f is an n-dimensional control function for G.
If f is an n-dimensional control function for every graph G in a class \mathcal{G}, we say that f is an n-dimensional control function for \mathcal{G}.

The asymptotic dimension of a class of graphs \mathcal{G} is the smallest n such that \mathcal{G} admits an n-dimensional control function, or ∞ otherwise (Gromov [1993]).

A problem

The control function $f(r)$ can be very big.

A problem

The control function $f(r)$ can be (and sometimes must be) very big.

A problem

The control function $f(r)$ can be (and sometimes must be) very big.
So let's consider when we can force it to be small.

A problem

The control function $f(r)$ can be (and sometimes must be) very big.
So let's consider when we can force it to be small.
A dilation is a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(r) \leqslant c r$ for some real number c.

A problem

The control function $f(r)$ can be (and sometimes must be) very big.
So let's consider when we can force it to be small.
A dilation is a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(r) \leqslant c r$ for some real number c.
The Assouad-Nagata dimension of a class of graphs \mathcal{G} is the smallest n such that \mathcal{G} admits an n-dimensional control function that is also a dilation, or ∞ otherwise (Assouad [1982], Nagata [1958]).

A problem

The control function $f(r)$ can be (and sometimes must be) very big.
So let's consider when we can force it to be small.
A dilation is a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(r) \leqslant c r$ for some real number c.
The Assouad-Nagata dimension of a class of graphs \mathcal{G} is the smallest n such that \mathcal{G} admits an n-dimensional control function that is also a dilation, or ∞ otherwise (Assouad [1982], Nagata [1958]).

From the definition, the Assouad-Nagata dimension is at most asymptotic dimension.

Examples

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])
- Complete graphs (0)

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])
- Complete graphs (0)
- Planar graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])
- Complete graphs (0)
- Planar graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Bounded genus graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])
- Complete graphs (0)
- Planar graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Bounded genus graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

The asymptotic dimension and Assouad-Nagata dimension can also be arbitrarily far apart.

Examples

Classes for which asymptotic dimension and Assouad-Nagata dimension are the same:

- Paths and trees (1) (Bell and Dranishnikov [2008])
- d-dimensional grids (d) (Gromov [1993])
- Complete graphs (0)
- Planar graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])
- Bounded genus graphs (2) (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

The asymptotic dimension and Assouad-Nagata dimension can also be arbitrarily far apart. For example, 1-planar graphs have asymptotic dimension 2 but Assouad-Nagata dimension ∞.

The Dimension of Minor-Closed Classes

Theorem (Ostrovskii and Rosenthal [2015])

If a proper minor-closed class excludes K_{t}, its Assouad-Nagata dimension is at most $4^{t}-1$.

The Dimension of Minor-Closed Classes

Theorem (Ostrovskii and Rosenthal [2015])

If a proper minor-closed class excludes K_{t}, its Assouad-Nagata dimension is at most $4^{t}-1$.

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Every proper minor-closed class has asymptotic dimension at most 2.

The Dimension of Minor-Closed Classes

Theorem (Ostrovskii and Rosenthal [2015])

If a proper minor-closed class excludes K_{t}, its Assouad-Nagata dimension is at most $4^{t}-1$.

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Every proper minor-closed class has asymptotic dimension at most 2.

My contribution:

The Dimension of Minor-Closed Classes

Theorem (Ostrovskii and Rosenthal [2015])

If a proper minor-closed class excludes K_{t}, its Assouad-Nagata dimension is at most $4^{t}-1$.

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Every proper minor-closed class has asymptotic dimension at most 2.

My contribution:

Theorem (Distel [2023], Liu [2023])

Every proper minor-closed class has Assouad-Nagata dimension at most 2.

Some intuition

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices
- Paste such graphs together via small cliques

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices
- Paste such graphs together via small cliques

We end up with something that is "not far" from an embeddable graph.

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices
- Paste such graphs together via small cliques

We end up with something that is "not far" from an embeddable graph.
We find that asymptotic and Assouad-Nagata "ignore" these modifications.

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices
- Paste such graphs together via small cliques

We end up with something that is "not far" from an embeddable graph.
We find that asymptotic and Assouad-Nagata "ignore" these modifications.
This is somewhat unexpected

Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour [2003]).

- Start with a graph embedded on a surface
- Add a bounded number of "vortices"
- Add a bounded number of apex vertices
- Paste such graphs together via small cliques

We end up with something that is "not far" from an embeddable graph.
We find that asymptotic and Assouad-Nagata "ignore" these modifications.
This is somewhat unexpected; adding a single vertex to a planar graph can force the genus by an arbitrary amount.

What about non-minor-closed classes

What about non-minor-closed classes

We can't say much in the most general case

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e has been replaced by a path.

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e has been replaced by a path.

Theorem

Any class that is not contained within a proper minor-closed class and is closed under subdivision has infinite Assouad-Nagata dimension.

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e has been replaced by a path.

Theorem

Any class that is not contained within a proper minor-closed class and is closed under subdivision has infinite Assouad-Nagata dimension.

The reason is that we have "too much" flexibility

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e has been replaced by a path.

Theorem

Any class that is not contained within a proper minor-closed class and is closed under subdivision has infinite Assouad-Nagata dimension.

The reason is that we have "too much" flexibility, any control function would allow us to find a control function for every class of graphs.

What about non-minor-closed classes

We can't say much in the most general case, but there is a specific case we can answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e has been replaced by a path.

Theorem

Any class that is not contained within a proper minor-closed class and is closed under subdivision has infinite Assouad-Nagata dimension.

The reason is that we have "too much" flexibility, any control function would allow us to find a control function for every class of graphs.

This result gives an alternative proof for 1-planar graphs having infinite Assouad-Nagata dimension.

That's it!

Thanks for listening!

Patrice Assouad. Sur la distance de Nagata. C. R. Acad. Sci. Paris Sér. I Math., 294(1):31-34, 1982.
G. Bell and A. Dranishnikov. Asymptotic dimension. Topology Appl., 155(12): 1265-1296, 2008.
Marthe Bonamy, Nicolas Bousquet, Louis Esperet, Carla Groenland, Chun-Hung Liu, François Pirot, and Alex Scott. Asymptotic dimension of minor-closed families and Assouad-Nagata dimension of surfaces. J. Euro. Math. Society, 2023.

Marc Distel. Proper minor-closed classes of graphs have Assouad-Nagata dimension 2. 2023.
Anna Erschler and Ivan Mitrofanov. Assouad-Nagata dimension and gap for ordered metric spaces, 2021. arXiv:2109.12181.
M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2, volume 182 of London Math. Soc. Lecture Note Ser., pages 1-295. Cambridge Univ. Press, Cambridge, 1993.
Chun-Hung Liu. Assouad-Nagata dimension of minor-closed metrics, 2023.
J. Nagata. Note on dimension theory for metric spaces. Fund. Math., 45:143-181, 1958.

Mikhail I. Ostrovskii and David Rosenthal. Metric dimensions of minor excluded graphs and minor exclusion in groups. Internat. J. Algebra Comput., 25(4): 541-554, 2015.
N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B, 89(1):43-76, 2003.

