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Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2023])

Applications:

Geometric group theory

Embeddings into Banach spaces

Travelling salesman problem (Erschler and Mitrofanov [2021])
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Asymptotic dimension

For a graph G , given some integer n ⩾ 0, we want to find a function
f : R+ → R+, such that

for every real number r > 0, we can find a partition P,
and give each part of one n + 1 colours, such that the following rules hold:

Two part of the same colour are at distance more than r in G

Two vertices in the same part are at distance at most f (r) in G

We then say that f is an n-dimensional control function for G .

If f is an n-dimensional control function for every graph G in a class G, we say
that f is an n-dimensional control function for G.

The asymptotic dimension of a class of graphs G is the smallest n such that G
admits an n-dimensional control function, or ∞ otherwise (Gromov [1993]).
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A problem

The control function f (r) can be very big.

So let’s consider when we can force it to be small.

A dilation is a function f : R+ → R+ such that f (r) ⩽ cr for some real number c .

The Assouad–Nagata dimension of a class of graphs G is the smallest n such that
G admits an n-dimensional control function that is also a dilation, or ∞ otherwise
(Assouad [1982], Nagata [1958]).

From the definition, the Assouad–Nagata dimension is at most asymptotic
dimension.
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most 4t − 1.
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Every proper minor-closed class has asymptotic dimension at most 2.
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Some intuition

The structure of proper minor-closed classes is known (Robertson and Seymour
[2003]).

Start with a graph embedded on a surface

Add a bounded number of “vortices”

Add a bounded number of apex vertices

Paste such graphs together via small cliques

We end up with something that is “not far” from an embeddable graph.

We find that asymptotic and Assouad–Nagata “ignore” these modifications.

This is somewhat unexpected

; adding a single vertex to a planar graph can force
the genus by an arbitrary amount.
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What about non-minor-closed classes

We can’t say much in the most general case

, but there is a specific case we can
answer.

To subdivide an edge e in a graph G is to create a new graph in which the edge e
has been replaced by a path.

Theorem
Any class that is not contained within a proper minor-closed class and is closed
under subdivision has infinite Assouad–Nagata dimension.

The reason is that we have “too much” flexibility

, any control function would
allow us to find a control function for every class of graphs.

This result gives an alternative proof for 1-planar graphs having infinite
Assouad–Nagata dimension.
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That’s it!

Thanks for listening!
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