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Intersecting k-sets of [n]

Theorem (Wilson 1984)
For n su�ciently large compared to k and t, a t-intersecting
family of k-subsets of [n] has size at most

(n−t
k−t
)
.

If equality holds, then all members of the family contain a fixed
t-subset of [n].
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Intersecting sets in Sn

intersecting set in S5 intersecting set in S5

Example
A coset of the stabiliser of an element in [n] is intersecting and
has size (n− 1)!.
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Intersecting sets in Sn

Theorem (Deza, Frankl 1977)
The size of an intersecting set in Sn is at most (n− 1)!.

Theorem (Cameron, Ku 2003; Larose, Malvenuto 2004)
If an intersecting set in Sn is of maximal size, then it is a coset of
the stabiliser of a point in [n].
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t-intersecting sets in Sn

2-intersecting set in S5.

Example
A coset of the stabiliser of t distinct elements of [n] is
t-intersecting of size (n− t)!.
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t-intersecting sets in Sn

Conjecture (Deza, Frankl 1977)
If n is su�ciently large compared to t, then a t-intersecting set Y
in Sn has size at most (n− t)!.
If equality holds, then Y is a coset of the stabiliser of t distinct
elements of [n].

Theorem (Ellis, Friedgut, Pilpel 2011)
The conjecture is true.
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t-intersecting sets in GL(n,q)

F3
2 = 〈 , , 〉 = { , , , , , , , }

equal on q2 elements
2-intersecting in GL(3, 2)
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t-intersecting sets in GL(n,q)

A coset of the stabiliser of t linearly independent elements of Fnq
is called t-coset.

Example
A t-coset is t-intersecting of size

n−1∏
i=t

(qn − qi).
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Known results

Theorem (M. Ahanjideh, N. Ahanjideh 2014)
The size of a 1-intersecting set in GL(n,q) is at most

n−1∏
i=1

(qn − qi).

Theorem (Maegher, Razafimahatratra 2021)
The characteristic vector of a 1-intersecting set of maximal size
in GL(2,q) is spanned by the characteristic vectors of 1-cosets.
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Main theorem (1)

Theorem (E., Schmidt 2023)
Let Y be a t-intersecting set in GL(n,q). If n is su�ciently large
compared to t, then

|Y| ≤
n−1∏
i=t

(qn − qi) (`)

and, in case of equality, the characteristic vector of Y is spanned
by the characteristic vectors of t-cosets.

The bound (`) was recently and independently obtained by Ellis,
Kindler, and Lifshitz with completely di�erent techniques.
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Extremal t-intersecting sets in GL(n,q)

Are the t-cosets the only t-intersecting sets in GL(n,q) of
maximal size?

No! If Y is t-intersecting, then YT is as well.

Theorem (Ahanjideh 2022)
A 1-intersecting set of GL(2,q) of maximal size is a 1-coset or the
transpose of a 1-coset.

Conjecture
Let Y be t-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a t-coset.

This conjecture was recently proved by Ellis, Kindler, and Lifshitz.
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t-set-intersecting sets in Sn

2-set-intersecting set in S5.

Example
A coset of the stabiliser of a t-set of [n] is t-set-intersecting of
size t!(n− t)!.
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t-set-intersecting sets in Sn

Theorem (Ellis 2012)
If n is su�ciently large compared to t, then a t-set-intersecting
set Y in Sn has size at most t!(n− t)!.
If equality holds, then Y is a coset of the stabiliser of a t-set
of [n].
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t-space-intersecting sets in GL(n,q)

F3
2 = 〈 , , 〉 = { , , , , , , , }

〈 , 〉 = { , , , }

equal on a 2-space
2-space-intersecting in GL(3, 2)
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t-space-intersecting sets in GL(n,q)

Example
A coset of the stabiliser of a t-space is t-space-intersecting of
size (t−1∏

i=0

(qt − qi)
)(n−1∏

i=t

(qn − qi)
)
.

Theorem (Meagher, Spiga 2011)
A 1-space-intersecting set in GL(n,q) has size at most

(q− 1)
n−1∏
i=1

(qn − qi).
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Main theorem (2)

Theorem (E., Schmidt 2023)
Let Y be t-space-intersecting in GL(n,q). If n is su�ciently large
compared to t, then

|Y| ≤
(t−1∏
i=0

(qt − qi)
)(n−1∏

i=t

(qn − qi)
)

and, in case of equality, the characteristic vector of Y is spanned
by the characteristic vectors of cosets of stabilisers of t-spaces.

15 18



Extremal t-space-intersecting sets in GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n,q) of maximal size?

No! If Y is t-space-intersecting, then YT is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in GL(n,q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n− 1)-space.

Conjecture
Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.

16 18



Extremal t-space-intersecting sets in GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n,q) of maximal size?
No!

If Y is t-space-intersecting, then YT is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in GL(n,q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n− 1)-space.

Conjecture
Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.

16 18



Extremal t-space-intersecting sets in GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n,q) of maximal size?
No! If Y is t-space-intersecting, then YT is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in GL(n,q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n− 1)-space.

Conjecture
Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.

16 18



Extremal t-space-intersecting sets in GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n,q) of maximal size?
No! If Y is t-space-intersecting, then YT is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in GL(n,q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n− 1)-space.

Conjecture
Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.

16 18



Extremal t-space-intersecting sets in GL(n,q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n,q) of maximal size?
No! If Y is t-space-intersecting, then YT is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)
A 1-space-intersecting set in GL(n,q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n− 1)-space.

Conjecture
Let Y be t-space-intersecting in GL(n,q) of maximal size. If n is
su�ciently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.

16 18



Weighted version of Hoffman bound

Theorem (Ellis, Friedgut, Pilpel 2011)
Let Γ = (X, E) be a graph and Γ0, Γ1, . . . , Γr be regular spanning
subgraphs of Γ with common eigenvectors {1, v1, . . . , vn−1}.

Let Pi(k) be the eigenvalue of vk in Γi and P(k) =
∑r

i=0 ωiPi(k),
where ωi ∈ R.
If Y ⊆ X is an independent set in Γ, then

|Y|
|X| ≤

|Pmin|
P(0) + |Pmin|

,

where Pmin = mink 6=0 P(k). If equality holds, then

1Y ∈ 〈{1} ∪ {vk : P(k) = Pmin}〉.

17 18
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where Pmin = mink 6=0 P(k). If equality holds, then

1Y ∈ 〈{1} ∪ {vk : P(k) = Pmin}〉.

17 18



Application of weighted Hoffman bound

Conjugacy classes and irr. characters of GL(n,q) are indexed
by

σ : { monic irr. polynomials} \ {X} → Partitions

such that n =
∑

f |σ(f )| deg(f ).

Let Γσ be the graph with vertex set GL(n,q) and adjacency
matrix

Aσ(x, y) =

{
1 for x−1y ∈ Cσ ∪ C−1

σ ,

0 otherwise
whose eigenvalues are determined by the character table.
We take carefully chosen conjugacy classes Cσ only
consisting of elements not fixing a t-dimensional subspace
(pointwise). Let Γ be the union of the corresponding Γσ.
Determine ωσ such that the sums

∑
σ ωσPσ(λ) have the

required properties.
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Thanks!


