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Theorem (Wilson 198¢4)

For n sufficiently large compared to k and t, a t-intersecting
family of k-subsets of [n] has size at most (;_}).

If equality holds, then all members of the family contain a fixed
t-subset of [n].
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A coset of the stabiliser of an element in [n] is intersecting and
has size (n — 1)L
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Theorem (Deza, Frankl 1977)

The size of an intersecting set in S, is at most (n —1)!.

Theorem (Cameron, Ku 2003; Larose, Malvenuto 2004)

If an intersecting set in S, is of maximal size, then it is a coset of
the stabiliser of a point in [n].
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2-intersecting set in Ss.

Example

A coset of the stabiliser of t distinct elements of [n] is
t-intersecting of size (n — t)!.
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Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y
in Sy has size at most (n — t)!.

If equality holds, then Y is a coset of the stabiliser of t distinct
elements of [n].




t-INTERSECTING SETS IN Sy,

Conjecture (Deza, Frankl 1977)

If n is sufficiently large compared to t, then a t-intersecting set Y
in Sy has size at most (n — t)!.

If equality holds, then Y is a coset of the stabiliser of t distinct
elements of [n].

Theorem (Ellis, Friedgut, Pilpel 2011)

The conjecture is true.
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r-000-00000 060

equal on g2 elements
2-intersecting in GL(3,2)




t-INTERSECTING SETS IN GL(n, q)

A coset of the stabiliser of t linearly independent elements of g
is called t-coset.
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A coset of the stabiliser of t linearly independent elements of g
is called t-coset.

Example

A t-coset is t-intersecting of size

(M=

[1(a"—a).

i=t



KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)

The size of a 1-intersecting set in GL(n, q) is at most

(M=

[I@" 4.
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KNOWN RESULTS

Theorem (M. Ahanjideh, N. Ahanjideh 2014)

The size of a 1-intersecting set in GL(n, q) is at most

(M=

[I@" 4.

i=1

Theorem (Maegher, Razafimahatratra 2021)

The characteristic vector of a 1-intersecting set of maximal size
in GL(2, q) is spanned by the characteristic vectors of 1-cosets.




MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in GL(n, q). If n is sufficiently large
compared to t, then

v < [T(a" — a) (#)
i=t

and, in case of equality, the characteristic vector of Y is spanned
by the characteristic vectors of t-cosets.



MAIN THEOREM (1)

Theorem (E., Schmidt 2023)

Let Y be a t-intersecting set in GL(n, q). If n is sufficiently large
compared to t, then

v < [T(a" — a) (#)
i=t

and, in case of equality, the characteristic vector of Y is spanned
by the characteristic vectors of t-cosets.

The bound (%) was recently and independently obtained by Ellis,
Kindler, and Lifshitz with completely different techniques.

)
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EXTREMAL t-INTERSECTING SETS IN GL(n, q)

Are the t-cosets the only t-intersecting sets in GL(n, q) of
maximal size? If Y is t-intersecting, then YT is as well.

Theorem (Ahanjideh 2022)

A 1-intersecting set of GL(2, q) of maximal size is a 1-coset or the
transpose of a 1-coset.

Conjecture

Let Y be t-intersecting in GL(n, q) of maximal size. If n is
sufficiently large compared to t, then Y or YT is a t-coset.

This conjecture was recently proved by Ellis, Kindler, and Lifshitz.
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2-set-intersecting set in Ss.

A coset of the stabiliser of a t-set of [n] is t-set-intersecting of
size t!(n —t)l.




t-SET-INTERSECTING SETS IN S,

Theorem (Ellis 2012)

If n is sufficiently large compared to t, then a t-set-intersecting
set Y in S, has size at most t!(n — t)!.

If equality holds, then Y is a coset of the stabiliser of a t-set
of [n].
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2-space-intersecting in GL(3,2)
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A coset of the stabiliser of a t-space is t-space-intersecting of

(ﬁ(qt — qi)) (ﬁ(Q” — q')) :

i=0

size

i=t




t-SPACE-INTERSECTING SETS IN GL(n, q)

A coset of the stabiliser of a t-space is t-space-intersecting of

size

(ﬁ(qt — qi)) (ﬁ(Q” — q')) :

i=0 i=t

Theorem (Meagher, Spiga 2011)

A 1-space-intersecting set in GL(n, q) has size at most

(q—1) ]:[(Q” —q').



MAIN THEOREM (2)

Theorem (E., Schmidt 2023)

Let Y be t-space-intersecting in GL(n, q). If n is sufficiently large
compared to t, then

\YISCH;q—q)(H(q >

and, in case of equality, the characteristic vector of Y is spanned
by the characteristic vectors of cosets of stabilisers of t-spaces.
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Are the cosets of stabilisers of t-spaces the only t-space-inter-
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If Y is t-space-intersecting, then Y is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)

A 1-space-intersecting set in GL(n, q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n —1)-space.



EXTREMAL t-SPACE-INTERSECTING SETS IN GL(I’L, q)

Are the cosets of stabilisers of t-spaces the only t-space-inter-
secting sets in GL(n, gq) of maximal size?
If Y is t-space-intersecting, then Y is as well.

Theorem (Meagher, Spiga 2011, 2014; Spiga 2019)

A 1-space-intersecting set in GL(n, q) of maximal size is a coset
of the stabiliser of a 1-space or a coset of the stabiliser of an
(n —1)-space.

Conjecture

Let Y be t-space-intersecting in GL(n, q) of maximal size. If n is
sufficiently large compared to t, then Y or YT is a coset of the
stabiliser of a t-space.
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WEIGHTED VERSION OF HOFFMAN BOUND

Theorem (Ellis, Friedgut, Pilpel 2011)

Let I = (X,E) be a graph and 'y, T4, ..., be regular spanning
subgraphs of ' with common eigenvectors {1,vs,...,Vy_1}.
Let P;(R) be the eigenvalue of vy, in T; and P(R) = >_i_, wiP;(R),
where w; € R.

If Y C X is an independent set in I, then

|Y| < ‘Pmin|

X| = P(O) + [Pmin|’
where Ppin = mingo P(R). If equality holds, then

1y € ({1} U {Vk: P(I?) = Pmin}>‘
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APPLICATION OF WEIGHTED HOFFMAN BOUND

Conjugacy classes and irr. characters of GL(n, q) are indexed
b .. . .\
v o: { monic irr. polynomials} \ {X} — Partitions

such that n = 3 o (f)| deg(f).

m Let [, be the graph with vertex set GL(n, q) and adjacency
matrix
1 forx7'ye G, UC,

o otherwise

AQ(va) - {

whose eigenvalues are determined by the character table.
m We take carefully chosen conjugacy classes C, only
consisting of elements not fixing a t-dimensional subspace
(pointwise). Let I be the union of the corresponding I',,.
m Determine w, such that the sums "_w,P,(\) have the
required properties. -



THANKS!



