Spreading primitive groups of diagonal type do not exist

Saul D. Freedman

The University of Western Australia

Joint work with John Bamberg and Michael Giudici

45th Australasian Combinatorics Conference December 15, 2023

Let G be a finite transitive permutation group on a finite set Ω .

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \implies primitive.

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \implies primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \implies primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \implies primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

Synchronising and separating: conditions related to graphs defined on $\boldsymbol{\Omega}$ and preserved by G.

Let G be a finite transitive permutation group on a finite set Ω .

G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \implies primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

Synchronising and separating: conditions related to graphs defined on $\boldsymbol{\Omega}$ and preserved by G.

Spreading: conditions related to sets and multisets of elements of Ω .

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

O'Nan-Scott Theorem – Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

O'Nan-Scott Theorem – Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \implies almost simple or affine.

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

O'Nan-Scott Theorem – Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \implies almost simple or affine.

Synchronising \implies almost simple, affine or diagonal (Araújo, Cameron & Steinberg, 2017).

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

O'Nan-Scott Theorem – Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \implies almost simple or affine.

Synchronising \implies almost simple, affine or diagonal (Araújo, Cameron & Steinberg, 2017).

Where do diagonal groups fit in?

2-transitive \implies spreading \implies separating \implies synchronising \implies primitive.

O'Nan-Scott Theorem – Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \implies almost simple or affine.

Synchronising \implies almost simple, affine or diagonal (Araújo, Cameron & Steinberg, 2017).

Where do diagonal groups fit in?

Bray, Cai, Cameron, Spiga & Zhang (2020): For affine and diagonal groups, synchronising \iff separating.

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

•
$$T \times T \leq G \leq W(T) := \langle T \times T, \operatorname{Aut}(T), \sigma \rangle;$$

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

•
$$T \times T \leq G \leq W(T) := \langle T \times T, \operatorname{Aut}(T), \sigma \rangle;$$

• for $(t_1, t_2) \in T \times T$ and $s \in \Omega$, we have $s^{(t_1, t_2)} := t_1^{-1} s t_2$;

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

•
$$T \times T \leq G \leq W(T) := \langle T \times T, \operatorname{Aut}(T), \sigma \rangle;$$

• for $(t_1, t_2) \in T \times T$ and $s \in \Omega$, we have $s^{(t_1, t_2)} := t_1^{-1} s t_2$;

• Aut(T) acts naturally on Ω ;

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leq G \leq W(T) := \langle T \times T, \operatorname{Aut}(T), \sigma \rangle;$
- for $(t_1, t_2) \in T \times T$ and $s \in \Omega$, we have $s^{(t_1, t_2)} := t_1^{-1} s t_2$;
- Aut(T) acts naturally on Ω ;
- and $s^{\sigma} := s^{-1}$.

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega := T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

•
$$T \times T \leq G \leq W(T) := \langle T \times T, \operatorname{Aut}(T), \sigma \rangle;$$

- for $(t_1, t_2) \in T \times T$ and $s \in \Omega$, we have $s^{(t_1, t_2)} := t_1^{-1} s t_2$;
- Aut(T) acts naturally on Ω ;
- and $s^{\sigma} := s^{-1}$.

Theorem (Bamberg, Giudici, Lansdown & Royle, 2022)

The diagonal group $PSL_2(q) \times PSL_2(q)$ is synchronising for q = 13 and q = 17, and non-spreading for all q.

Question: Do spreading groups of diagonal type exist?

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

 \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

 \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that: |J| divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X_F} \mu_J(\alpha)$ is constant.

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

 \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that: |J| divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in Xg} \mu_J(\alpha)$ is constant.

Otherwise, G is spreading.

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

 \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:

|J| divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^g} \mu_J(\alpha)$ is constant.

Otherwise, G is spreading.

(X, J) is a witness to G being non-spreading.

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if:

 \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that: |J| divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^g} \mu_J(\alpha)$ is constant.

Otherwise, G is spreading.

(X, J) is a witness to G being non-spreading.

G non-spreading \implies all transitive subgroups of G are non-spreading.

Question: Do spreading groups of diagonal type exist?

 Ω – set; J – multiset of elements of Ω ; $\mu_J(\alpha)$ – multiplicity in J of $\alpha \in \Omega$.

J is trivial if μ_J is constant on Ω , or if $\mu_J(\alpha) \neq 0$ for a unique α .

Definition

A transitive permutation group G on Ω is non-spreading if: \exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that: |J| divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^g} \mu_J(\alpha)$ is constant. Otherwise, G is spreading.

(X, J) is a witness to G being non-spreading.

G non-spreading \implies all transitive subgroups of G are non-spreading.

Theorem (Bamberg, F. & Giudici, 2023+)

Each primitive group of diagonal type is non-spreading.

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$\exists B \triangleleft A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T), \tag{*}$$

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T), \tag{*}$$

then W(T) is non-spreading, with witness (A, T + |A : B|B - A), hence all diagonal groups with socle $T \times T$ are non-spreading.

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T), \tag{*}$$

then W(T) is non-spreading, with witness (A, T + |A : B|B - A), hence all diagonal groups with socle $T \times T$ are non-spreading.

Theorem (Bamberg, F., Giudici, & Royle, 2023+)

Let T be a non-abelian finite simple group.

Then (*) holds $\iff T \notin \{J_1, M_{22}, J_3, McL, Th, \mathbb{M}\}.$

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T), \tag{*}$$

then W(T) is non-spreading, with witness (A, T + |A : B|B - A), hence all diagonal groups with socle $T \times T$ are non-spreading.

Theorem (Bamberg, F., Giudici, & Royle, 2023+)

Let T be a non-abelian finite simple group.

Then (*) holds $\iff T \notin \{J_1, M_{22}, J_3, McL, Th, \mathbb{M}\}.$

 \implies : GAP; Magma; Burness, O'Brien & Wilson (2010) for Th; Burness (2023) for M.
$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T)$ (*)

$\exists B \triangleleft A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T)$ (*)

 Σ_A – set of right cosets of A in T.

$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T)$

 Σ_A – set of right cosets of A in T.

Given A and B, (*) holds if:

(P1) A and B have the same orbits in the action of T on Σ_A ;

(*)

$\exists B \trianglelefteq A \lneq T \text{ s.t. } A = B(A \cap A^{\tau}) \ \forall \tau \in \operatorname{Aut}(T)$

 Σ_A – set of right cosets of A in T.

Given A and B, (*) holds if:

(P1) A and B have the same orbits in the action of T on Σ_A ; (P2) all Aut(T)-conjugates of A in T are conjugate in T. (*)

$T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on Γ : $\{\beta \in \Gamma \mid |\beta \cap \alpha| = i\}$ for $i \in \{0, 1, 2, 3\}$.

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on Γ : $\{\beta \in \Gamma \mid |\beta \cap \alpha| = i\}$ for $i \in \{0, 1, 2, 3\}$. \implies (P1).

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on Γ : { $\beta \in \Gamma \mid |\beta \cap \alpha| = i$ } for $i \in \{0, 1, 2, 3\}$. \implies (P1).

For $\tau \in S_n$: $A^{\tau} = T_{\alpha^{\tau}}$

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on Γ : $\{\beta \in \Gamma \mid |\beta \cap \alpha| = i\}$ for $i \in \{0, 1, 2, 3\}$. \implies (P1).

For
$$\tau \in S_n$$
: $A^{\tau} = T_{\alpha^{\tau}}$
= T_{α^s} for some $s \in T$ (transitivity of T)

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on
$$\Gamma$$
:
 $\{\beta \in \Gamma \mid |\beta \cap \alpha| = i\}$ for $i \in \{0, 1, 2, 3\}$.
 \implies (P1).

For
$$\tau \in S_n$$
: $A^{\tau} = T_{\alpha^{\tau}}$
= T_{α^s} for some $s \in T$ (transitivity of T)
= $A^s \implies$ (P2).

 $T = A_n$, $n \ge 7$ ($A_5 \cong PSL_2(4)$ and $A_6 \cong PSL_2(9)$ will be addressed later).

Let Γ be the set of 3-subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Let $A := T_{\alpha} = (S_3 \times S_{n-3}) \cap T$ and $B := A_3 \times A_{n-3}$.

The action of T on Γ is transitive, and equivalent to its action on Σ_A .

For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha| = |\beta^x \cap \alpha^x| = |\beta^x \cap \alpha|$.

A and B have the same orbits on
$$\Gamma$$
:
 $\{\beta \in \Gamma \mid |\beta \cap \alpha| = i\}$ for $i \in \{0, 1, 2, 3\}$.
 \implies (P1).

For
$$\tau \in S_n$$
: $A^{\tau} = T_{\alpha^{\tau}}$
= T_{α^s} for some $s \in T$ (transitivity of T)
= $A^s \implies$ (P2).

(P1) and (P2) \implies (*) \implies W(T) is non-spreading.

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*.

- $\begin{array}{l} T \mbox{ a simple group of Lie type } {}^{r}X_{\ell}(q) \mbox{:} \\ r \in \{1,2,3\}, \ X \in \{{\rm A,B,C,D,E,F,G}\}, \ \ell \geqslant 1, \ q \ \mbox{a power of a prime } p. \end{array}$
- U Sylow *p*-subgroup of *T*.

T - a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime p.

- U Sylow *p*-subgroup of T.
- $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T. (†)

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*.

U – Sylow *p*-subgroup of *T*.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T. (†)

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

T - a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime p.

U – Sylow *p*-subgroup of T.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

(†) and $T = ANB \implies AsA = AsB \forall s \in T \implies$ (P1).

 (\dagger)

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*. *U* − Sylow *p*-subgroup of *T*.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T. (†)

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

(†) and $T = ANB \implies AsA = AsB \forall s \in T \implies$ (P1).

If r = 1 and q = 2: May assume $\ell \ge 3$.

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*. *U* − Sylow *p*-subgroup of *T*.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T. (†)

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

(†) and $T = ANB \implies AsA = AsB \quad \forall s \in T \implies$ (P1).

If r = 1 and q = 2: May assume $\ell \ge 3$. PSL₂(2) $\cong S_3$.

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*. *U* − Sylow *p*-subgroup of *T*.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

(†) and $T = ANB \implies AsA = AsB \forall s \in T \implies$ (P1).

If r = 1 and q = 2: May assume $\ell \ge 3$.

 $PSL_2(2) \cong S_3.$

Can choose A to be a parabolic subgroup $K \rtimes (M \times S_3)$ and $B := K \rtimes (M \times C_3)$, with K a 2-group and M a subgroup of Lie type.

 (\dagger)

T − a simple group of Lie type ${}^{r}X_{\ell}(q)$: $r \in \{1, 2, 3\}, X \in \{A, B, C, D, E, F, G\}, \ell \ge 1, q$ a power of a prime *p*. *U* − Sylow *p*-subgroup of *T*.

 $N_T(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \ge 2$ or $q \ge 3$: let $A := N_T(U) > U$ and B := U. Then (P2) holds.

(†) and $T = ANB \implies AsA = AsB \forall s \in T \implies$ (P1).

If r = 1 and q = 2: May assume $\ell \ge 3$.

 $\mathrm{PSL}_2(2) \cong S_3.$

Can choose A to be a parabolic subgroup $K \rtimes (M \times S_3)$ and $B := K \rtimes (M \times C_3)$, with K a 2-group and M a subgroup of Lie type.

We consider how the elements of N conjugate certain involutions of $A \setminus B$.

 (\dagger)

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

For $A \leq T$, let fix(s) := set of points in Σ_A fixed by $s \in T$.

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

For $A \leq T$, let fix(s) := set of points in Σ_A fixed by $s \in T$.

Cauchy–Frobenius Lemma: For $C \leq T$, the number of orbits of C on Σ_A is $\lambda_C := \frac{1}{|C|} \sum_{s \in C} |\operatorname{fix}(s)|$.

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

For $A \leq T$, let fix(s) := set of points in Σ_A fixed by $s \in T$.

Cauchy–Frobenius Lemma: For $C \leq T$, the number of orbits of C on Σ_A is $\lambda_C := \frac{1}{|C|} \sum_{s \in C} |\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library: $T \notin \{J_1, M_{22}, J_3, McL, Th, \mathbb{M}\} \implies \exists B \trianglelefteq A \underset{max}{<} T \text{ s.t. } \lambda_A = \lambda_B$ \implies (P1).

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

For $A \leq T$, let fix(s) := set of points in Σ_A fixed by $s \in T$.

Cauchy–Frobenius Lemma: For $C \leq T$, the number of orbits of C on Σ_A is $\lambda_C := \frac{1}{|C|} \sum_{s \in C} |\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library: $T \notin \{J_1, M_{22}, J_3, McL, Th, \mathbb{M}\} \implies \exists B \trianglelefteq A \underset{max}{<} T \text{ s.t. } \lambda_A = \lambda_B$ \implies (P1).

If also $T \neq O'N$, then (P2) holds. So (*) holds.

T – one of the 26 sporadic simple groups, or the Tits group ${}^{2}F_{4}(2)'$.

For $A \leq T$, let fix(s) := set of points in Σ_A fixed by $s \in T$.

Cauchy–Frobenius Lemma: For $C \leq T$, the number of orbits of C on Σ_A is $\lambda_C := \frac{1}{|C|} \sum_{s \in C} |\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library: $T \notin \{J_1, M_{22}, J_3, McL, Th, \mathbb{M}\} \implies \exists B \trianglelefteq A \underset{max}{<} T \text{ s.t. } \lambda_A = \lambda_B$ \implies (P1).

If also $T \neq O'N$, then (P2) holds. So (*) holds.

For O'N, we consider the right cosets of A in Aut(T), instead of in T.

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 \exists pairwise non-conjugate $r, s_1, s_2 \in T$ such that (i) $r^{-1} \in r^T$;

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 \exists pairwise non-conjugate $r, s_1, s_2 \in T$ such that (i) $r^{-1} \in r^T$; (ii) $|s_1^T| = |s_2^T|$; and

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 $\exists \text{ pairwise non-conjugate } r, s_1, s_2 \in T \text{ such that (i) } r^{-1} \in r^T;$ (ii) $|s_1^T| = |s_2^T|$; and

(iii) $\chi(r^{\tau}) = 0 \quad \forall \tau \in \operatorname{Aut}(T), \quad \forall \chi \in \operatorname{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 $\exists \text{ pairwise non-conjugate } r, s_1, s_2 \in T \text{ such that (i) } r^{-1} \in r^T;$ (ii) $|s_1^T| = |s_2^T|;$ and (iii) $\chi(r^\tau) = 0 \quad \forall \tau \in \text{Aut}(T), \quad \forall \chi \in \text{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$

Let $X := r^T$, $g \in W(T)$. By (i), $\exists \tau \in Aut(T), u \in T$ s.t. $X^g = (r^{\tau})^T u$.
$\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 $\exists \text{ pairwise non-conjugate } r, s_1, s_2 \in T \text{ such that (i) } r^{-1} \in r^T;$ (ii) $|s_1^T| = |s_2^T|$; and
(iii) $\chi(r^\tau) = 0 \quad \forall \tau \in \operatorname{Aut}(T), \quad \forall \chi \in \operatorname{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$ Let $X := r^T, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T \text{ s.t. } X^g = (r^\tau)^T u.$ Let $J := \Omega + s_1^T - s_2^T$. Then $|J| = |\Omega|$, and $\sum_{\alpha \in X^g} \mu_J(\alpha) = |X| + |X^g \cap s_1^T| - |X^g \cap s_2^T|.$

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 \exists pairwise non-conjugate $r, s_1, s_2 \in T$ such that (i) $r^{-1} \in r^T$: (ii) $|s_1^T| = |s_2^T|$; and (iii) $\chi(r^{\tau}) = 0 \ \forall \tau \in \operatorname{Aut}(T), \ \forall \chi \in \operatorname{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$ Let $X := r^T$, $g \in W(T)$. By (i), $\exists \tau \in Aut(T), u \in T$ s.t. $X^g = (r^\tau)^T u$. Let $J := \Omega + s_1^T - s_2^T$. Then $|J| = |\Omega|$, and $\sum_{\alpha \in \mathbf{X}^g} \mu_I(\alpha) = |X| + |X^g \cap s_1^T| - |X^g \cap s_2^T|.$ For $i \in \{1,2\}$: $|X^g \cap s_i^T| = \frac{|r^T||s_i^T|}{|T|} \sum_{\chi(1)} \frac{\chi(r^{\tau})\chi(u)\overline{\chi(s_i)}}{\chi(1)}$. $\chi \in \operatorname{Irr}(T)$

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 \exists pairwise non-conjugate $r, s_1, s_2 \in T$ such that (i) $r^{-1} \in r^T$: (ii) $|s_1^T| = |s_2^T|$; and (iii) $\chi(r^{\tau}) = 0 \ \forall \tau \in \operatorname{Aut}(T), \ \forall \chi \in \operatorname{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$ Let $X := r^T$, $g \in W(T)$. By (i), $\exists \tau \in Aut(T), u \in T$ s.t. $X^g = (r^\tau)^T u$. Let $J := \Omega + s_1^T - s_2^T$. Then $|J| = |\Omega|$, and $\sum_{\alpha \in \mathbf{X}^g} \mu_I(\alpha) = |X| + |X^g \cap s_1^T| - |X^g \cap s_2^T|.$ For $i \in \{1,2\}$: $|X^g \cap s_i^T| = \frac{|r^T||s_i^T|}{|T|} \sum_{\substack{\chi(r^\tau)\chi(u) \overline{\chi(s_i)} \\ \chi(1)}} \sum_{\chi(1)} \frac{\chi(r^\tau)\chi(u) \overline{\chi(s_i)}}{\chi(1)}$. $\chi \in \operatorname{Irr}(T)$ (ii) & (iii) $\implies |X^g \cap s_1^T| = |X^g \cap s_2^T| \quad \forall g \in W(T).$

 $\mathcal{T} \in \{\mathrm{J}_1, \mathrm{M}_{22}, \mathrm{J}_3, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\}.$

Irr(T) – set of irreducible complex characters of T.

 \exists pairwise non-conjugate $r, s_1, s_2 \in T$ such that (i) $r^{-1} \in r^T$: (ii) $|s_1^T| = |s_2^T|$; and (iii) $\chi(r^{\tau}) = 0 \ \forall \tau \in \operatorname{Aut}(T), \ \forall \chi \in \operatorname{Irr}(T) \text{ s.t. } \chi(s_1) \neq \chi(s_2).$ Let $X := r^T$, $g \in W(T)$. By (i), $\exists \tau \in Aut(T), u \in T$ s.t. $X^g = (r^\tau)^T u$. Let $J := \Omega + s_1^T - s_2^T$. Then $|J| = |\Omega|$, and $\sum_{\alpha \in \mathbf{X}^g} \mu_I(\alpha) = |X| + |X^g \cap s_1^T| - |X^g \cap s_2^T|.$ For $i \in \{1,2\}$: $|X^g \cap s_i^T| = \frac{|r^T||s_i^T|}{|T|} \sum_{\substack{\chi(r^\tau)\chi(u)\overline{\chi(s_i)}\\ \chi(1)}}$. $\chi \in \operatorname{Irr}(T)$ (ii) & (iii) $\implies |X^g \cap s_1^T| = |X^g \cap s_2^T| \quad \forall g \in W(T).$ \implies (X, J) is a witness to W(T) being non-spreading.