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The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.

G is primitive if Ω has no nontrivial G -invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) ⇒⇐⇒ primitive.

Araújo, Cameron and Steinberg’s (2017) synchronisation hierarchy of
permutation groups:

2-transitive ⇒⇐⇒ spreading ⇒⇐⇒ separating ⇒⇐⇒ synchronising ⇒⇐⇒
primitive.

Synchronising and separating: conditions related to graphs defined on Ω
and preserved by G .

Spreading: conditions related to sets and multisets of elements of Ω.
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Araújo, Cameron and Steinberg’s (2017) synchronisation hierarchy of
permutation groups:

2-transitive ⇒⇐⇒ spreading ⇒⇐⇒ separating ⇒⇐⇒ synchronising ⇒⇐⇒
primitive.

Synchronising and separating: conditions related to graphs defined on Ω
and preserved by G .

Spreading: conditions related to sets and multisets of elements of Ω.

2 / 11



Classifications of primitive groups

2-transitive ⇒⇐⇒ spreading ⇒⇐⇒ separating ⇒⇐⇒ synchronising ⇒⇐⇒
primitive.

O’Nan–Scott Theorem – Primitive groups are of almost simple, affine,
diagonal, product or twisted wreath type.

2-transitive ⇒⇐⇒ almost simple or affine.

Synchronising ⇒⇐⇒ almost simple, affine or diagonal (Araújo, Cameron &
Steinberg, 2017).

Where do diagonal groups fit in?

Bray, Cai, Cameron, Spiga & Zhang (2020): For affine and diagonal
groups, synchronising ⇐⇒ separating.
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Steinberg, 2017).

Where do diagonal groups fit in?

Bray, Cai, Cameron, Spiga & Zhang (2020): For affine and diagonal
groups, synchronising ⇐⇒ separating.

3 / 11



Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga & Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle T × T for
some non-abelian finite simple group T .

Let Ω := T . The diagonal groups with socle T × T are the groups G
acting on Ω where:

T × T ⩽ G ⩽ W (T ) := ⟨T × T ,Aut(T ), σ⟩;

for (t1, t2) ∈ T × T and s ∈ Ω, we have s(t1,t2) := t−1
1 st2;

Aut(T ) acts naturally on Ω;

and sσ := s−1.

Theorem (Bamberg, Giudici, Lansdown & Royle, 2022)

The diagonal group PSL2(q)× PSL2(q) is synchronising for q = 13 and
q = 17, and non-spreading for all q.
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Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?

Ω – set; J – multiset of elements of Ω; µJ(α) – multiplicity in J of α ∈ Ω.

J is trivial if µJ is constant on Ω, or if µJ(α) ̸= 0 for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
∃ a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
|J| divides |Ω|, and for all g ∈ G , the sum

∑
α∈X g µJ(α) is constant.

Otherwise, G is spreading.

(X , J) is a witness to G being non-spreading.

G non-spreading ⇒⇐⇒ all transitive subgroups of G are non-spreading.

Theorem (Bamberg, F. & Giudici, 2023+)

Each primitive group of diagonal type is non-spreading.
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A proper subgroup condition

Bamberg, Giudici, Lansdown & Royle (2023+) provide a useful method of
finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

∃B ⪇◁ A ⪇ T s.t. A = B(A ∩ Aτ ) ∀τ ∈ Aut(T ), (∗)

then W (T ) is non-spreading, with witness (A,T + |A : B|B − A),
hence all diagonal groups with socle T × T are non-spreading.

Theorem (Bamberg, F., Giudici, & Royle, 2023+)

Let T be a non-abelian finite simple group.

Then (∗) holds ⇐⇒ T /∈ {J1,M22, J3,McL,Th,M}.

⇒⇐⇒ : GAP; Magma; Burness, O’Brien & Wilson (2010) for Th;
Burness (2023) for M.
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Then (∗) holds ⇐⇒ T /∈ {J1,M22, J3,McL,Th,M}.

⇒⇐⇒ : GAP; Magma; Burness, O’Brien & Wilson (2010) for Th;
Burness (2023) for M.
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Transitive actions of simple groups

∃B ⪇◁ A ⪇ T s.t. A = B(A ∩ Aτ ) ∀τ ∈ Aut(T ) (∗)

ΣA – set of right cosets of A in T .

Given A and B, (∗) holds if:

(P1) A and B have the same orbits in the action of T on ΣA;

(P2) all Aut(T )-conjugates of A in T are conjugate in T .
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Alternating groups

T = An, n ⩾ 7 (A5
∼= PSL2(4) and A6

∼= PSL2(9) will be addressed later).

Let Γ be the set of 3-subsets of {1, . . . , n}, and α ∈ Γ.

Let A := Tα = (S3 × Sn−3) ∩ T and B := A3 × An−3.

The action of T on Γ is transitive, and equivalent to its action on ΣA.

For β ∈ Ω and x ∈ A, we have |β ∩ α| = |βx ∩ αx | = |βx ∩ α|.

A and B have the same orbits on Γ:
{β ∈ Γ | |β ∩ α| = i} for i ∈ {0, 1, 2, 3}.
⇒⇐⇒ (P1).

For τ ∈ Sn : Aτ = Tατ

= Tαs for some s ∈ T (transitivity of T )

= As ⇒⇐⇒ (P2).

(P1) and (P2) ⇒⇐⇒ (∗) ⇒⇐⇒ W (T ) is non-spreading.
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Groups of Lie type

T – a simple group of Lie type rXℓ(q):
r ∈ {1, 2, 3}, X ∈ {A,B,C,D,E,F,G}, ℓ ⩾ 1, q a power of a prime p.

U – Sylow p-subgroup of T .

NT (U) and a subgroup N of T form a (B,N)-pair for T . (�)

If r ⩾ 2 or q ⩾ 3: let A := NT (U) > U and B := U. Then (P2) holds.

(�) and T = ANB ⇒⇐⇒ AsA = AsB ∀s ∈ T ⇒⇐⇒ (P1).

If r = 1 and q = 2: May assume ℓ ⩾ 3.

PSL2(2) ∼= S3.

Can choose A to be a parabolic subgroup K ⋊ (M × S3) and
B := K ⋊ (M × C3), with K a 2-group and M a subgroup of Lie type.

We consider how the elements of N conjugate certain involutions of A \ B.
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Sporadic simple groups and 2F4(2)
′

T – one of the 26 sporadic simple groups, or the Tits group 2F4(2)
′.

For A ⩽ T , let fix(s) := set of points in ΣA fixed by s ∈ T .

Cauchy–Frobenius Lemma: For C ⩽ T , the number of orbits of C on ΣA

is λC := 1
|C |

∑
s∈C

|fix(s)|.

Calculations using the GAP Character Table Library:
T /∈ {J1,M22, J3,McL,Th,M} ⇒⇐⇒ ∃B ⪇◁ A <

max
T s.t. λA = λB

⇒⇐⇒ (P1).

If also T ̸= O′N, then (P2) holds. So (∗) holds.

For O′N, we consider the right cosets of A in Aut(T ), instead of in T .
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⇒⇐⇒ (P1).

If also T ̸= O′N, then (P2) holds. So (∗) holds.

For O′N, we consider the right cosets of A in Aut(T ), instead of in T .
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Remaining sporadic simple groups

T ∈ {J1,M22, J3,McL,Th,M}.

Irr(T ) – set of irreducible complex characters of T .

∃ pairwise non-conjugate r , s1, s2 ∈ T such that (i) r−1 ∈ rT ;

(ii) |sT1 | = |sT2 |; and

(iii) χ(r τ ) = 0 ∀τ ∈ Aut(T ), ∀χ ∈ Irr(T ) s.t. χ(s1) ̸= χ(s2).

Let X := rT , g ∈ W (T ). By (i), ∃τ ∈ Aut(T ), u ∈ T s.t. X g = (r τ )Tu.

Let J := Ω + sT1 − sT2 . Then |J| = |Ω|, and∑
α∈X g µJ(α) = |X |+ |X g ∩ sT1 | − |X g ∩ sT2 |.

For i ∈ {1, 2}: |X g ∩ sTi | = |rT ||sTi |
|T |

∑
χ∈Irr(T )

χ(rτ )χ(u)χ(si )
χ(1) .

(ii) & (iii) ⇒⇐⇒ |X g ∩ sT1 | = |X g ∩ sT2 | ∀g ∈ W (T ).

⇒⇐⇒ (X , J) is a witness to W (T ) being non-spreading.
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