Spreading primitive groups of diagonal type do not exist

Saul D. Freedman

The University of Western Australia

Joint work with John Bamberg and Michael Giudici

45th Australasian Combinatorics Conference
December 15, 2023

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \Longrightarrow primitive.

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \Longrightarrow primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \Longrightarrow primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \Longrightarrow primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

Synchronising and separating: conditions related to graphs defined on Ω and preserved by G.

The synchronisation hierarchy of permutation groups

Let G be a finite transitive permutation group on a finite set Ω.
G is primitive if Ω has no nontrivial G-invariant partitions.

2-transitive (point stabiliser has two orbits on Ω) \Longrightarrow primitive.

Araújo, Cameron and Steinberg's (2017) synchronisation hierarchy of permutation groups:

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

Synchronising and separating: conditions related to graphs defined on Ω and preserved by G.

Spreading: conditions related to sets and multisets of elements of Ω.

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

O'Nan-Scott Theorem - Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

O'Nan-Scott Theorem - Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \Longrightarrow almost simple or affine.

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

O'Nan-Scott Theorem - Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \Longrightarrow almost simple or affine.

Synchronising \Longrightarrow almost simple, affine or diagonal (Araújo, Cameron \& Steinberg, 2017).

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

O'Nan-Scott Theorem - Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \Longrightarrow almost simple or affine.

Synchronising \Longrightarrow almost simple, affine or diagonal (Araújo, Cameron \& Steinberg, 2017).

Where do diagonal groups fit in?

Classifications of primitive groups

2-transitive \Longrightarrow spreading \Longrightarrow separating \Longrightarrow synchronising \Longrightarrow primitive.

O'Nan-Scott Theorem - Primitive groups are of almost simple, affine, diagonal, product or twisted wreath type.

2-transitive \Longrightarrow almost simple or affine.

Synchronising \Longrightarrow almost simple, affine or diagonal (Araújo, Cameron \& Steinberg, 2017).

Where do diagonal groups fit in?

Bray, Cai, Cameron, Spiga \& Zhang (2020): For affine and diagonal groups, synchronising \Longleftrightarrow separating.

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)
 Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.
 Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leqslant G \leqslant W(T):=\langle T \times T, \operatorname{Aut}(T), \sigma\rangle ;$

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leqslant G \leqslant W(T):=\langle T \times T, \operatorname{Aut}(T), \sigma\rangle$;
- for $\left(t_{1}, t_{2}\right) \in T \times T$ and $s \in \Omega$, we have $s^{\left(t_{1}, t_{2}\right)}:=t_{1}^{-1} s t_{2}$;

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leqslant G \leqslant W(T):=\langle T \times T, \operatorname{Aut}(T), \sigma\rangle$;
- for $\left(t_{1}, t_{2}\right) \in T \times T$ and $s \in \Omega$, we have $s^{\left(t_{1}, t_{2}\right)}:=t_{1}^{-1} s t_{2}$;
- $\operatorname{Aut}(T)$ acts naturally on Ω;

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leqslant G \leqslant W(T):=\langle T \times T, \operatorname{Aut}(T), \sigma\rangle$;
- for $\left(t_{1}, t_{2}\right) \in T \times T$ and $s \in \Omega$, we have $s^{\left(t_{1}, t_{2}\right)}:=t_{1}^{-1} s t_{2}$;
- Aut (T) acts naturally on Ω;
- and $s^{\sigma}:=s^{-1}$.

Synchronising diagonal groups

Theorem (Bray, Cai, Cameron, Spiga \& Zhang, 2020)

Let G be a synchronising diagonal group. Then G has socle $T \times T$ for some non-abelian finite simple group T.

Let $\Omega:=T$. The diagonal groups with socle $T \times T$ are the groups G acting on Ω where:

- $T \times T \leqslant G \leqslant W(T):=\langle T \times T, \operatorname{Aut}(T), \sigma\rangle$;
- for $\left(t_{1}, t_{2}\right) \in T \times T$ and $s \in \Omega$, we have $s^{\left(t_{1}, t_{2}\right)}:=t_{1}^{-1} s t_{2}$;
- $\operatorname{Aut}(T)$ acts naturally on Ω;
- and $s^{\sigma}:=s^{-1}$.

Theorem (Bamberg, Giudici, Lansdown \& Royle, 2022)

The diagonal group $\operatorname{PSL}_{2}(q) \times \operatorname{PSL}_{2}(q)$ is synchronising for $q=13$ and $q=17$, and non-spreading for all q.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{J}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{J}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{J}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{\boldsymbol{J}}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{\boldsymbol{J}}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
$|J|$ divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)$ is constant.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{\boldsymbol{J}}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
$|J|$ divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)$ is constant.
Otherwise, G is spreading.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{\boldsymbol{J}}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
$|J|$ divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)$ is constant.
Otherwise, G is spreading.
(X, J) is a witness to G being non-spreading.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{\boldsymbol{J}}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
$|J|$ divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)$ is constant.
Otherwise, G is spreading.
(X, J) is a witness to G being non-spreading.
G non-spreading \Longrightarrow all transitive subgroups of G are non-spreading.

Spreading diagonal groups

Question: Do spreading groups of diagonal type exist?
Ω - set; J - multiset of elements of $\Omega ; \mu_{J}(\alpha)$ - multiplicity in J of $\alpha \in \Omega$.
J is trivial if μ_{J} is constant on Ω, or if $\mu_{J}(\alpha) \neq 0$ for a unique α.

Definition

A transitive permutation group G on Ω is non-spreading if:
\exists a nontrivial subset X of Ω and a nontrivial multiset J of Ω such that:
$|J|$ divides $|\Omega|$, and for all $g \in G$, the sum $\sum_{\alpha \in X_{g}} \mu_{J}(\alpha)$ is constant.
Otherwise, G is spreading.
(X, J) is a witness to G being non-spreading.
G non-spreading \Longrightarrow all transitive subgroups of G are non-spreading.

Theorem (Bamberg, F. \& Giudici, 2023+)

Each primitive group of diagonal type is non-spreading.

A proper subgroup condition

Bamberg, Giudici, Lansdown \& Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

A proper subgroup condition

Bamberg, Giudici, Lansdown \& Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$
\begin{equation*}
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T), \tag{*}
\end{equation*}
$$

A proper subgroup condition

Bamberg, Giudici, Lansdown \& Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$
\begin{equation*}
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T), \tag{*}
\end{equation*}
$$

then $W(T)$ is non-spreading, with witness $(A, T+|A: B| B-A)$, hence all diagonal groups with socle $T \times T$ are non-spreading.

A proper subgroup condition

Bamberg, Giudici, Lansdown \& Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$
\begin{equation*}
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T), \tag{*}
\end{equation*}
$$

then $W(T)$ is non-spreading, with witness $(A, T+|A: B| B-A)$, hence all diagonal groups with socle $T \times T$ are non-spreading.

Theorem (Bamberg, F., Giudici, \& Royle, 2023+)

Let T be a non-abelian finite simple group.
Then $(*)$ holds $\Longleftrightarrow T \notin\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.

A proper subgroup condition

Bamberg, Giudici, Lansdown \& Royle (2023+) provide a useful method of finding non-spreading witnesses. Using this, we prove:

If a non-abelian finite simple group T satisfies

$$
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T),
$$

then $W(T)$ is non-spreading, with witness $(A, T+|A: B| B-A)$, hence all diagonal groups with socle $T \times T$ are non-spreading.

Theorem (Bamberg, F., Giudici, \& Royle, 2023+)

Let T be a non-abelian finite simple group.
Then $(*)$ holds $\Longleftrightarrow T \notin\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
\Longrightarrow : GAP; Magma; Burness, O'Brien \& Wilson (2010) for Th; Burness (2023) for \mathbb{M}.

Transitive actions of simple groups

$$
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T)
$$

Transitive actions of simple groups

$$
\exists B \unlhd A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T)
$$

Σ_{A} - set of right cosets of A in T.

Transitive actions of simple groups

$$
\begin{equation*}
\exists B \nsupseteq A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T) \tag{*}
\end{equation*}
$$

Σ_{A} - set of right cosets of A in T.

Given A and $B,(*)$ holds if:
(P1) A and B have the same orbits in the action of T on Σ_{A};

Transitive actions of simple groups

$$
\begin{equation*}
\exists B \nrightarrow A \lesseqgtr T \text { s.t. } A=B\left(A \cap A^{\tau}\right) \forall \tau \in \operatorname{Aut}(T) \tag{*}
\end{equation*}
$$

Σ_{A} - set of right cosets of A in T.

Given A and $B,(*)$ holds if:
(P1) A and B have the same orbits in the action of T on Σ_{A};
(P2) all $\operatorname{Aut}(T)$-conjugates of A in T are conjugate in T.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \mathrm{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \mathrm{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.
$\Longrightarrow(\mathrm{P} 1)$.

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.
$\Longrightarrow(P 1)$.

$$
\text { For } \tau \in S_{n}: \quad A^{\tau}=T_{\alpha^{\tau}}
$$

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.
$\Longrightarrow(P 1)$.

$$
\text { For } \begin{aligned}
\tau \in S_{n}: \quad A^{\tau} & =T_{\alpha^{\tau}} \\
& =T_{\alpha^{s}} \text { for some } s \in T(\text { transitivity of } T)
\end{aligned}
$$

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.
$\Longrightarrow(P 1)$.

$$
\text { For } \begin{aligned}
\tau \in S_{n}: \quad A^{\tau} & =T_{\alpha^{\tau}} \\
& \left.=T_{\alpha^{s}} \text { for some } s \in T \text { (transitivity of } T\right) \\
& =A^{s} \Longrightarrow(\mathrm{P} 2) .
\end{aligned}
$$

Alternating groups

$T=A_{n}, n \geqslant 7\left(A_{5} \cong \operatorname{PSL}_{2}(4)\right.$ and $A_{6} \cong \operatorname{PSL}_{2}(9)$ will be addressed later $)$.
Let Γ be the set of 3 -subsets of $\{1, \ldots, n\}$, and $\alpha \in \Gamma$.
Let $A:=T_{\alpha}=\left(S_{3} \times S_{n-3}\right) \cap T$ and $B:=A_{3} \times A_{n-3}$.
The action of T on Γ is transitive, and equivalent to its action on Σ_{A}.
For $\beta \in \Omega$ and $x \in A$, we have $|\beta \cap \alpha|=\left|\beta^{x} \cap \alpha^{x}\right|=\left|\beta^{x} \cap \alpha\right|$.
A and B have the same orbits on Γ :
$\{\beta \in \Gamma||\beta \cap \alpha|=i\}$ for $i \in\{0,1,2,3\}$.
$\Longrightarrow(P 1)$.

$$
\text { For } \begin{aligned}
\tau \in S_{n}: \quad A^{\tau} & =T_{\alpha^{\tau}} \\
& \left.=T_{\alpha^{s}} \text { for some } s \in T \text { (transitivity of } T\right) \\
& =A^{s} \Longrightarrow(\mathrm{P} 2) .
\end{aligned}
$$

$(\mathrm{P} 1)$ and $(\mathrm{P} 2) \Longrightarrow(*) \Longrightarrow W(T)$ is non-spreading.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p. U - Sylow p-subgroup of T.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.
(\dagger) and $T=A N B \Longrightarrow A s A=A s B \forall s \in T \Longrightarrow(P 1)$.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.
(\dagger) and $T=A N B \Longrightarrow A s A=A s B \forall s \in T \Longrightarrow(\mathrm{P} 1)$.

If $r=1$ and $q=2$: May assume $\ell \geqslant 3$.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.
(\dagger) and $T=A N B \Longrightarrow A s A=A s B \forall s \in T \Longrightarrow(P 1)$.

If $r=1$ and $q=2$: May assume $\ell \geqslant 3$.
$\operatorname{PSL}_{2}(2) \cong S_{3}$.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.
(\dagger) and $T=A N B \Longrightarrow A s A=A s B \forall s \in T \Longrightarrow(P 1)$.

If $r=1$ and $q=2$: May assume $\ell \geqslant 3$.
$\operatorname{PSL}_{2}(2) \cong S_{3}$.
Can choose A to be a parabolic subgroup $K \rtimes\left(M \times S_{3}\right)$ and $B:=K \rtimes\left(M \times C_{3}\right)$, with K a 2-group and M a subgroup of Lie type.

Groups of Lie type

T - a simple group of Lie type ${ }^{r} X_{\ell}(q)$:
$r \in\{1,2,3\}, X \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}, \ell \geqslant 1, q$ a power of a prime p.
U - Sylow p-subgroup of T.
$N_{T}(U)$ and a subgroup N of T form a (B, N)-pair for T.

If $r \geqslant 2$ or $q \geqslant 3$: let $A:=N_{T}(U)>U$ and $B:=U$. Then (P2) holds.
(\dagger) and $T=A N B \Longrightarrow A s A=A s B \forall s \in T \Longrightarrow(P 1)$.

If $r=1$ and $q=2$: May assume $\ell \geqslant 3$.
$\operatorname{PSL}_{2}(2) \cong S_{3}$.
Can choose A to be a parabolic subgroup $K \rtimes\left(M \times S_{3}\right)$ and $B:=K \rtimes\left(M \times C_{3}\right)$, with K a 2-group and M a subgroup of Lie type.

We consider how the elements of N conjugate certain involutions of $A \backslash B$.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.
For $A \leqslant T$, let $\operatorname{fix}(s):=$ set of points in Σ_{A} fixed by $s \in T$.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.
For $A \leqslant T$, let $\operatorname{fix}(s):=$ set of points in Σ_{A} fixed by $s \in T$.

Cauchy-Frobenius Lemma: For $C \leqslant T$, the number of orbits of C on Σ_{A} is $\lambda_{C}:=\frac{1}{|C|} \sum_{s \in C}|\operatorname{fix}(s)|$.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.
For $A \leqslant T$, let $\operatorname{fix}(s):=$ set of points in Σ_{A} fixed by $s \in T$.

Cauchy-Frobenius Lemma: For $C \leqslant T$, the number of orbits of C on Σ_{A} is $\lambda_{C}:=\frac{1}{|C|} \sum_{s \in C}|\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library: $T \notin\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\} \Longrightarrow \exists B \nrightarrow A \underset{\max }{<} T$ s.t. $\lambda_{A}=\lambda_{B}$ $\Longrightarrow(\mathrm{P} 1)$.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.

For $A \leqslant T$, let $\operatorname{fix}(s):=$ set of points in Σ_{A} fixed by $s \in T$.

Cauchy-Frobenius Lemma: For $C \leqslant T$, the number of orbits of C on Σ_{A} is $\lambda_{C}:=\frac{1}{|C|} \sum_{s \in C}|\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library: $T \notin\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\} \Longrightarrow \exists B \nrightarrow A \underset{\max }{<} T$ s.t. $\lambda_{A}=\lambda_{B}$ $\Longrightarrow(\mathrm{P} 1)$.

If also $T \neq \mathrm{O}^{\prime} \mathrm{N}$, then (P2) holds. So (*) holds.

Sporadic simple groups and ${ }^{2} F_{4}(2)^{\prime}$

T - one of the 26 sporadic simple groups, or the Tits group ${ }^{2} F_{4}(2)^{\prime}$.
For $A \leqslant T$, let $\operatorname{fix}(s):=$ set of points in Σ_{A} fixed by $s \in T$.

Cauchy-Frobenius Lemma: For $C \leqslant T$, the number of orbits of C on Σ_{A} is $\lambda_{C}:=\frac{1}{|C|} \sum_{s \in C}|\operatorname{fix}(s)|$.

Calculations using the GAP Character Table Library:
$T \notin\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\} \Longrightarrow \exists B \nsupseteq A \underset{\max }{<} T$ s.t. $\lambda_{A}=\lambda_{B}$
$\Longrightarrow(\mathrm{P} 1)$.
If also $T \neq \mathrm{O}^{\prime} \mathrm{N}$, then (P2) holds. So (*) holds.
For $\mathrm{O}^{\prime} \mathrm{N}$, we consider the right cosets of A in $\operatorname{Aut}(T)$, instead of in T.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Let $X:=r^{T}, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T$ s.t. $X^{g}=\left(r^{\tau}\right)^{T} u$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Let $X:=r^{T}, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T$ s.t. $X^{g}=\left(r^{\tau}\right)^{T} u$.
Let $J:=\Omega+s_{1}^{T}-s_{2}^{T}$. Then $|J|=|\Omega|$, and
$\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)=|X|+\left|X^{g} \cap s_{1}^{\top}\right|-\left|X^{g} \cap s_{2}^{T}\right|$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Let $X:=r^{T}, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T$ s.t. $X^{g}=\left(r^{\tau}\right)^{T} u$.
Let $J:=\Omega+s_{1}^{T}-s_{2}^{T}$. Then $|J|=|\Omega|$, and
$\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)=|X|+\left|X^{g} \cap s_{1}^{\top}\right|-\left|X^{g} \cap s_{2}^{T}\right|$.
For $i \in\{1,2\}: \quad\left|X^{g} \cap s_{i}^{T}\right|=\frac{\left|r^{T}\right|\left|s_{i}^{T}\right|}{|T|} \sum_{\chi \in \operatorname{Irr}(T)} \frac{\chi\left(r^{\tau}\right) \chi(u) \overline{\chi\left(s_{i}\right)}}{\chi(1)}$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Let $X:=r^{T}, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T$ s.t. $X^{g}=\left(r^{\tau}\right)^{T} u$.
Let $J:=\Omega+s_{1}^{T}-s_{2}^{T}$. Then $|J|=|\Omega|$, and
$\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)=|X|+\left|X^{g} \cap s_{1}^{T}\right|-\left|X^{g} \cap s_{2}^{T}\right|$.
For $i \in\{1,2\}: \quad\left|X^{g} \cap s_{i}^{T}\right|=\frac{\left|r^{T}\right|\left|s_{i}^{T}\right|}{|T|} \sum_{\chi \in \operatorname{Irr}(T)} \frac{\chi\left(r^{\tau}\right) \chi(u) \overline{\chi\left(s_{i}\right)}}{\chi(1)}$.
(ii) \& (iii) $\Longrightarrow\left|X^{g} \cap s_{1}^{T}\right|=\left|X^{g} \cap s_{2}^{T}\right| \forall g \in W(T)$.

Remaining sporadic simple groups

$T \in\left\{\mathrm{~J}_{1}, \mathrm{M}_{22}, \mathrm{~J}_{3}, \mathrm{McL}, \mathrm{Th}, \mathbb{M}\right\}$.
$\operatorname{Irr}(T)$ - set of irreducible complex characters of T.
\exists pairwise non-conjugate $r, s_{1}, s_{2} \in T$ such that (i) $r^{-1} \in r^{T}$;
(ii) $\left|s_{1}^{T}\right|=\left|s_{2}^{T}\right|$; and
(iii) $\chi\left(r^{\tau}\right)=0 \forall \tau \in \operatorname{Aut}(T), \forall \chi \in \operatorname{Irr}(T)$ s.t. $\chi\left(s_{1}\right) \neq \chi\left(s_{2}\right)$.

Let $X:=r^{T}, g \in W(T)$. By (i), $\exists \tau \in \operatorname{Aut}(T), u \in T$ s.t. $X^{g}=\left(r^{\tau}\right)^{T} u$.
Let $J:=\Omega+s_{1}^{T}-s_{2}^{T}$. Then $|J|=|\Omega|$, and
$\sum_{\alpha \in X^{g}} \mu_{J}(\alpha)=|X|+\left|X^{g} \cap s_{1}^{T}\right|-\left|X^{g} \cap s_{2}^{T}\right|$.
For $i \in\{1,2\}: \quad\left|X^{g} \cap s_{i}^{T}\right|=\frac{\left|r^{T}\right|\left|s_{i}^{T}\right|}{|T|} \sum_{\chi \in \operatorname{Irr}(T)} \frac{\chi\left(r^{\tau}\right) \chi(u) \overline{\chi\left(s_{i}\right)}}{\chi(1)}$.
(ii) \& (iii) $\Longrightarrow\left|X^{g} \cap s_{1}^{T}\right|=\left|X^{g} \cap s_{2}^{T}\right| \forall g \in W(T)$.
$\Longrightarrow(X, J)$ is a witness to $W(T)$ being non-spreading.

