Levenshtein's Conjecture for Sequence Covering Arrays

Dani Gentle (she/they)

School of Mathematics, Monash University For positive integers $v \ge t$:

- $[v] = \{0, \dots, v-1\}$
- S_v denotes the set of permutations of [v]
- S_{v,t} denotes the set of ordered t-sequences of distinct elements of [v]
- E.g. $012 \in S_{5,3}$, $011 \not\in S_{5,3}$, $0123 \not\in S_{5,3}$

A sequence $s \in S_{v,t}$ is covered by a permutation $\pi \in S_v$ if the elements of s appear in π in the order specified by s

012 and 014 are both covered by 01234

A sequence $s \in S_{v,t}$ is covered by a permutation $\pi \in S_v$ if the elements of s appear in π in the order specified by s

012 and 014 are both covered by 01234

A sequence $s \in S_{v,t}$ is covered by a permutation $\pi \in S_v$ if the elements of s appear in π in the order specified by s

012 and 014 are both covered by 01234

Definition

A set of permutations $X \subseteq S_v$ with N = |X| is a sequence covering array, denoted SCA(N; v, t), if for every sequence $s \in S_{v,t}$, there exists $\pi \in X$ that covers s.

- v is the order of X.
- *t* is the *strength* of *X*.

- For given v and t, what is the smallest N such that a SCA(N; v, t) exists?
- For what values for v and t does there exist a SCA(t!; v, t)?

Theorem (Levenshtein, 1992) For $t \ge 3$, a SCA(t!; t + 1, t) exists.

Conjecture (Levenshtein, 1992) For $t \ge 3$, if a SCA(t!; v, t) exists, then $v \in \{t, t+1\}$.

- A SCA(24; 6, 4) does exist (Mathon and van Trung, 1999). This the only known counter-example to Levenshtein's conjecture.
- A SCA(24; 7, 4) does not exist (Klein, 2004).
- The conjecture has been verified for $t \in \{3, 5, 6\}$.

Theorem (Chee et al., 2013) For $t \ge 3$, if a SCA(t!; v, t) exists, then $v \le 2t - 1$. Let A be an $N \times k$ array with entries from [v]. A 2-way interaction is a set of 2 pairs

$$T = \{(c_1, \nu_1), (c_2, \nu_2)\},\$$

where c_1 and c_2 are distinct columns of A and ν_1 and ν_2 are elements of [v].

A covers T if there exists a row r of A such that $A[r, c_1] = \nu_1$ and $A[r, c_2] = \nu_2$.

Definition

An *interaction covering array*, denoted ICA(N; 2, k, v), is an $N \times k$ array with entries from [v] that covers all 2-way interactions.

c_1	<i>c</i> ₂	c ₃	С4	<i>C</i> 5
1	1	1	0	1
0	0	1	0	0
0	1	0	1	1
1	0	0	1	0
0	1	0	0	0
0	0	1	1	1

Table 1: A strength 2 interaction covering array

Let $T = \{(c_1, \nu_1), (c_2, \nu_2)\}$. Then T is either

- a constant pair, if $\nu_1 = \nu_2$, or
- a non-constant pair, if $\nu_1 \neq \nu_2$.

An interaction covering array has excess coverage, denoted $ICA_X(N; 2, k, v)$, if each constant pair is covered at least twice.

Theorem (Chee et al., 2013) For $v \ge 4$, If an ICA_X(v(v + 1); 2, k, v) exists, then $k \le v + 2$. Let S be a SCA(t!; v, t).

Choose a sequence in $x \in S_{v,t-2}$ and let $R \subset S$ be the set of t(t-1) permutations that cover x.

Construct a $t(t-1) \times (v-t+2)$ array, A, whose rows and columns are indexed by the elements of R and the symbols not in x.

A[r, c] is the number of symbols in x that appear to the left of c in the permutation r. Then A is an ICA_X(t(t-1); 2, v - t + 2, t - 1).

A row is *flat* if it contains only one symbol.

An *orthogonal array* is an ICA in which every interaction is covered exactly once.

An ICA_X(v(v + 1); 2, k, v) contains an orthogonal array if and only if it has flat rows for each symbol.

Corollary (G.) An ICA_X(v(v + 1); 2, v + 1, v) exists when v is a prime power. **Lemma (G.)** If v!/(v - t + 2)! > t!, and a SCA(t!, v, t) exists, then a non-OA ICA_X must exist.

If v = t + 2, this inequality holds for $t \ge 4$.

V	.,	Maximum number of columns			
	V	OA	non-OA		
	3	4	4		
	4	5	5		
	5	6	5		
	6	3	5		

These results were found by computer search.

The non-existence of an $ICA_X(42; 2, 6, 6)$ shows a SCA(7!; 11, 7) does not exist.

There is a unique $ICA_X(42; 2, 5, 6)$.

- It's a non-OA,
- No flat rows,
- Every row contains a repeated symbol.

The existence of an ICA_X(42; 2, 5, 6) suggests a SCA(7!; 10, 7) could exist.

Theorem (G.) A SCA(7!; 10, 7) does not exist.

Proof. Suppose a SCA(7!; 10, 7) exists and contains the identity.

Consider the ICA_X(42; 2, 5, 6) built from the sequence x = 01234.

This array should have a flat row but no such ICA_X exists.

Alternatively,

Theorem (G.) A SCA(7!; 10, 7) does not exist.

Proof. Suppose a SCA(7!; 10, 7) exists and contains the identity.

Consider the ICA_X(42; 2, 5, 6) built from the sequence x = 02468.

This array should have a row with no repeated symbols but no such ICA_X exists.

- Is the max number of columns for an ICA_X v + 1 or v + 2?
- Find a general construction for non-OA ICA_X .
- Explore connections between SCAs and ICA_X to make further progress on Levenshtein's conjecture.

Thank you!