Latin Squares with Restricted Transversals

Afsane Ghafari

Monash University
Joint work with Ian Wanless (Monash University)

Dec 12, 2023

Latin squares

Definition (Latin square)

A latin square is an $n \times n$ array consisting of n distinct symbols where each symbol appears exactly once in each row and each column. One can use \mathbb{Z}_{n} for indexing rows, columns and symbols of a latin square of order n.

Latin squares

Definition (Latin square)

A latin square is an $n \times n$ array consisting of n distinct symbols where each symbol appears exactly once in each row and each column. One can use \mathbb{Z}_{n} for indexing rows, columns and symbols of a latin square of order n.

Example

0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2

Transversals in latin squares

Definition (Transversal)

A transversal of a latin square of order n is an n-subset of entries such that each row, column and symbol appear exactly once.

Transversals in latin squares

Definition (Transversal)

A transversal of a latin square of order n is an n-subset of entries such that each row, column and symbol appear exactly once.

Example

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

Disjoint transversals

We say two transversals are disjoint if they do not share any entries:

Disjoint transversals

We say two transversals are disjoint if they do not share any entries:

Example

These two transversals are not disjoint:

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

Orthogonal mates

Definition (Orthogonal mates)

A pair of latin squares $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of order n are said to be orthogonal mates if the n^{2} ordered pairs ($a_{i j}, b_{i j}$) are distinct.

Example

$B=$| 2 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 3 | 1 | 2 |

$A=$| 2 | 1 | 3 |
| :--- | :--- | :--- |
| 1 | 3 | 2 |
| 3 | 2 | 1 |

$(2,2)$	$(3,1)$	$(1,3)$
$(1,1)$	$(2,3)$	$(3,2)$
$(3,3)$	$(1,2)$	$(2,1)$

Orthogonal mates

Definition (Orthogonal mates)

A pair of latin squares $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of order n are said to be orthogonal mates if the n^{2} ordered pairs $\left(a_{i j}, b_{i j}\right)$ are distinct.

Example

$B=$| 2 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 3 | 1 | 2 |

$A=$| 2 | 1 | 3 |
| :--- | :--- | :--- |
| 1 | 3 | 2 |
| 3 | 2 | 1 |

$(2,2)$	$(3,1)$	$(1,3)$
$(1,1)$	$(2,3)$	$(3,2)$
$(3,3)$	$(1,2)$	$(2,1)$

Remark

For orthogonal mates A and B, it is simple to see that if we look at all n occurrences of a given symbol in B, then the corresponding positions in A must form a transversal.

Orthogonal mates

Theorem
A latin square has an orthogonal mate iff it has a decomposition into disjoint transversals.

Orthogonal mates

Theorem

A latin square has an orthogonal mate iff it has a decomposition into disjoint transversals.

Euler observed that the addition table of \mathbb{Z}_{n}, where n is even, does not contain any transversals.

0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2

Latin squares without disjoint transversals

Theorem (Cavenagh and Wanless, 2017)
For even $n \rightarrow \infty$, there are at least $n^{n^{\frac{3}{2}}\left(\frac{1}{2}-o(1)\right)}$ species of transversal-free latin squares of order n.

Main theorem

Today in this talk, I am looking for latin squares of even order with transversals, but very restricted in that they share a lot of entries in common.

Main theorem

Today in this talk, I am looking for latin squares of even order with transversals, but very restricted in that they share a lot of entries in common.

Our main theorem is the following:

Theorem (Ghafari \& Wanless, 2023+)

There exist arbitrarily large even order latin squares with at least one transversal, yet all transversals concide on $\left\lfloor\frac{n}{6}\right\rfloor$ entries, where n is the order of the latin square.

Orthogonal array representation

Remark

- Every latin square can be represented as a set of n^{2} ordered triples (r, c, s), where the ordered pair (r, c) is the index of row and column of symbol s.
- The Latin property ensures that when two triples are not identical, they must share at most one coordinate.

Example

0	1	2
1	2	0
2	0	1

$\{(0,0,0),(0,1,1),(0,2,2),(1,0,1),(1,1,2),(1,2,0),(2,0,2)$, $(2,1,0),(2,2,1)\}$.

Orthogonal array representation

Remark

- Every latin square can be represented as a set of n^{2} ordered triples (r, c, s), where the ordered pair (r, c) is the index of row and column of symbol s.
- The Latin property ensures that when two triples are not identical, they must share at most one coordinate.

Example

0	1	2
1	2	0
2	0	1

$\{(0,0,0),(0,1,1),(0,2,2),(1,0,1),(1,1,2),(1,2,0),(2,0,2)$,
$(2,1,0),(2,2,1)\}$.

Δ-lemma

The following lemma will be crucial to prove our main theorem.

Lemma (Δ-lemma)

Let L be a latin square of order n indexed by \mathbb{Z}_{n}. Define a function $\Delta: L \longrightarrow \mathbb{Z}_{n}$ by $\Delta(r, c, s)=s-r-c$. If T is a transversal of L then, modulo n,

$$
\sum_{(r, c, s) \in T} \Delta(r, c, s)= \begin{cases}0, & \text { if } n \text { is odd } \\ \frac{1}{2} n, & \text { if } n \text { is even. }\end{cases}
$$

Main theorem

Recall our main theorem is the following:

Theorem (Ghafari \& Wanless, 2023)

There exist arbitrarily large even order latin squares with at least one transversal, yet all transversals concide on $\left\lfloor\frac{n}{6}\right\rfloor$ entries, where n is the order of the latin square.

Main theorem

Recall our main theorem is the following:

Theorem (Ghafari \& Wanless, 2023)

There exist arbitrarily large even order latin squares with at least one transversal, yet all transversals concide on $\left\lfloor\frac{n}{6}\right\rfloor$ entries, where n is the order of the latin square.

We proved the existence through construction. We construct the desired latin squares and then specify the position of entries that their transversal must share for any even order except when $n \equiv 2 \bmod 6$.

Main theorem

Recall our main theorem is the following:

Theorem (Ghafari \& Wanless, 2023)

There exist arbitrarily large even order latin squares with at least one transversal, yet all transversals concide on $\left\lfloor\frac{n}{6}\right\rfloor$ entries, where n is the order of the latin square.

We proved the existence through construction. We construct the desired latin squares and then specify the position of entries that their transversal must share for any even order except when $n \equiv 2 \bmod 6$.

Proof.
We split it into three cases. We denote the family for the case of $n=6 k$, where $k \geq 2$, by \mathcal{P}_{n}.

Proof of Theorem

For $n=6 k$, where $k \geq 3$ is an integer, consider latin square \mathcal{P}_{n} given by:

Proof of Theorem

For $n=6 k$, where $k \geq 3$ is an integer, consider latin square \mathcal{P}_{n} given by:
$\mathcal{P}_{n}[a, b]= \begin{cases}a-2 & \text { if }(a, b)=(3,0) \\ a+2 & \text { if }(a, b) \in\{(1,0),(2,1)\} \\ a+2 b & \text { if }(a, b) \in\{(0,1),(0,2)\} \\ a+b+3 & \text { if } b \equiv 1 \bmod 3 \operatorname{and} a=0 \\ a+b-3 & \text { if } b>1, b \equiv 1 \bmod 3 \text { and } a=3 \\ a+b-2 & \text { if } a>3, a \equiv 0 \bmod 3 \text { and } b \equiv 0 \bmod 2 \\ a+b+2 & \text { if } a>3, a \equiv 1 \bmod 3 \text { and } b \equiv 0 \bmod 2, b \notin\{n-2 a+3, n-2 a+2\} \\ a+b+1 & \text { if }(a>3, a \equiv 1 \bmod 3 \operatorname{and} b \in\{n-2 a+3, n-2 a+2\}) \text { or } \\ & \begin{array}{ll}(a>3, a \equiv 2 \bmod 3 \operatorname{and} b=n-2 a+4)\end{array} \\ a+b-1 & \text { if }(a>3, a \equiv 2 \bmod 3 \operatorname{and} b \in\{n-2 a+5\}) \text { or } \\ & ((a, b) \in\{(1,1),(1,2),(2,2),(3,1)\}) \\ a+b & \text { otherwise. }\end{cases}$

Proof of Theorem

Recall the Δ-lemma for even n :

$$
\sum_{(r, c, s) \in T} \Delta(r, c, s)=\frac{1}{2} n \bmod n
$$

The corresponding non-zero Δ-values of \mathcal{P}_{n}, where $n=6 \times 4$, is as follows:

Proof of Theorem

Recall the Δ-lemma for even n :

$$
\sum_{(r, c, s) \in T} \Delta(r, c, s)=\frac{1}{2} n \bmod n
$$

The corresponding non-zero Δ-values of \mathcal{P}_{n}, where $n=6 \times 4$, is as follows:

	0	1	2	4	7	10	12	13	16	18	19	20	22
0		1	2	3	3	3		3	3		3		3
1	2	-1	-1										
2		1	-1										
3	-2	-1		-3	-3	-3		-3	-3		-3		-3
4	2		2	2		2			2	1	1	2	2
5										1	-1		
6	-2		-2	-2		-2	-2			-2		-2	-2
7	2		2	2		2	1	1		2		2	2
8							1	-1					
9	-2		-2	-2		-2	-2		-2	-2		-2	-2

Proof of Theorem

This leads us to the following lemma:

Lemma

The latin square \mathcal{P}_{n} has a transversal, and all of them include the entries $(1,0),(2,1),(5, n-6),(8, n-12), \ldots,(3 k-4,12)$.

Proof of Theorem

It can be verified that the following corresponds to a transversal

$$
\operatorname{col}(a)= \begin{cases}4 & \text { if } a=0 \\ a-1 & \text { if } a \in\{1,2,3\} \\ 5 & \text { if } a=3 k+2 \\ n-2 a+4 & \text { if }(4 \leq a \leq 3 k-3 \text { and } a \not \equiv 0 \bmod 3) \text { or } a=3 k-2 \text { or } a=3 k-1 \\ n-2 a+7 & \text { if } 4 \leq a \leq 3 k-3 \operatorname{and} a \equiv 0 \bmod 3 \\ n-2 a+3 & \text { if }(a \geq 3 k+3 \text { and } a \equiv 0 \bmod 3) \text { or } a=3 k \\ n-2 a+6 & \text { if } a \geq 3 k+3 \text { and } a \equiv 1 \bmod 3 \\ n-2 a+9 & \text { if }(a \geq 3 k+3 \text { and } a \equiv 2 \bmod 3) \text { or } a=3 k+1\end{cases}
$$

Hence, the proof is complete.

Proof of Theorem

We denote the family for the case of $n=6 k+4$ by \mathcal{L}_{n}.

Recall the Δ-lemma for even n :

$$
\sum_{(r, c, s) \in T} \Delta(r, c, s)=\frac{1}{2} n \bmod n
$$

The corresponding non-zero Δ-values of \mathcal{L}_{n}, where $n=6 \times 3+4$, is as follows:

Proof of Theorem

We denote the family for the case of $n=6 k+4$ by \mathcal{L}_{n}.

Recall the Δ-lemma for even n :

$$
\sum_{(r, c, s) \in T} \Delta(r, c, s)=\frac{1}{2} n \quad \bmod n
$$

The corresponding non-zero Δ-values of \mathcal{L}_{n}, where $n=6 \times 3+4$, is as follows:

	0	1	2	5	8	10	11	12	14	16	17	18	20
0		1	3	3	3		3		3		3		3
1	2	-1	-1										
3	-2		-2	-3	-3		-3		-3		-3		-3
4	2		2		2	2		2	2	1	1	2	2
5										1	-1		
6	-2		-2		-2	-2		-2	-2	-2		-2	-2
7	2		2		2	1	1	2	2	2		2	2
8						1	-1						
9	-2		-2		-2	-2		-2	-2	-2		-2	-2

Latin squares of odd orders

- We didn't find any analogue of the mentioned results for odd orders. We don't know if there is any latin square with any number of disjoint transversals less than $\frac{n}{3}+2$.

Latin squares of odd orders

- We didn't find any analogue of the mentioned results for odd orders. We don't know if there is any latin square with any number of disjoint transversals less than $\frac{n}{3}+2$.
- Wanless and Zhang, 2013 showed there are latin squares of order $n=3 k$, where $k \geq 4$ is an integer, with no more than $\frac{n}{3}+2$ disjoint transversals.

Latin squares of odd orders

Theorem (Ghafari \& Wanless, 2022)
For all odd $m \geq 3$, there exists a latin square of order $n=3 m$ with three subsquares of size m where every transversal has to hit each of these subsquares at least once.

References

Cavenagh, N. J., \& Wanless, I. M. (2017).Latin squares with no transversals. The Electronic Journal of Combinatorics, 24(2), P2-45.
Wanless, I. M., \& Zhang, X. (2013).Transversals of latin squares and covering radius of sets of permutations. European Journal of Combinatorics, $34(7), 1130-1143$.

Thank you!

