How to design a graph with three eigenvalues

Gary Greaves

Nanyang Technological University
Singapore
12th December 2023

Plan

- Graphs with three distinct eigenvalues
- Coherent closure of a graph
- Graphs with small coherent rank
- Graphs with two valencies and large coherent rank
- Graphs with three valencies

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue:

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue: no edges (empty graphs)
(0)

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue: no edges (empty graphs)
(0)
- 2 distinct eigenvalues:

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue: no edges (empty graphs)

(0)

- 2 distinct eigenvalues: all edges (complete graphs)

$$
\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & 0
\end{array}\right)=J-I
$$

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue: no edges (empty graphs)

(0)

- 2 distinct eigenvalues: all edges (complete graphs)

$$
\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & 0
\end{array}\right)=J-I
$$

- 3 distinct eigenvalues:

Graphs with few distinct eigenvalues

- 1 distinct eigenvalue: no edges (empty graphs)

(0)

- 2 distinct eigenvalues: all edges (complete graphs)

$$
\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \ldots & 1 & 0
\end{array}\right)=J-I
$$

- 3 distinct eigenvalues: ...

Regular graphs with three eigenvalues

$k=6$

Regular graphs with three eigenvalues

Regular graphs with three eigenvalues

$k=6$

$\lambda=3$

Regular graphs with three eigenvalues

Regular graphs with three eigenvalues

$\lambda=3$

Regular graphs with three eigenvalues

Regular graphs with three eigenvalues

Regular graphs with three eigenvalues

Regular graphs with three eigenvalues

strongly regular $\operatorname{srg}(10,6,3,4)$

Regular graphs with three eigenvalues

$A:$ adjacency matrix of $\operatorname{srg}(v, k, \lambda, \mu)$.

$$
A^{2}=k I \quad+\quad \lambda A \quad+\mu(J-I-A)
$$

$$
\begin{gathered}
\Uparrow \\
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J
\end{gathered}
$$

Nonregular graphs with three eigenvalues

Question (Haemers 1995)
Apart from strongly regular graphs and complete bipartite graphs, which graphs have just three distinct eigenvalues?

Nonregular graphs with three eigenvalues

Question (Haemers 1995)

Apart from strongly regular graphs and complete bipartite graphs, which graphs have just three distinct eigenvalues?

Strongly regular graph: a regular graph (V, E) for which $\exists \lambda, \mu$ such that, $\forall x, y \in V$ with $x \neq y$, the number of common neighbours of x and y is

$$
\begin{cases}\lambda, & \text { if } x \sim y \\ \mu, & \text { if } x \nsim y .\end{cases}
$$

Complete bipartite graphs $K_{a, b}$ have spectrum

$$
\left\{[\sqrt{a b}]^{1},[0]^{a+b-2},[-\sqrt{a b}]^{1}\right\}
$$

Nonregular graphs with three eigenvalues

Question (Haemers 1995)

Apart from strongly regular graphs and complete bipartite graphs, which graphs have just three distinct eigenvalues?

Muzychuk-Klin (1998): infinite families of examples with Van Dam (1998): two valencies and a positive number of examples with three valencies.

Shrikhande cone

Fano graph

Cones over strongly regular graphs

Cone: n-vertex graph with a vertex of valency $n-1$.
Cone over Γ : join of K_{1} and Γ.

Theorem (Muzychuk and Klin 1998).

Let Γ be a (non-complete) strongly regular graph with v vertices, valency k, and smallest eigenvalue $-m$. The cone over Γ has precisely three distinct eigenvalues if and only if

$$
m(k+m)=v .
$$

Petersen cone:

$$
\left\{[5]^{1},[1]^{5},[-2]^{5}\right\}
$$

Switching strongly regular graphs

Switching: $\left[\begin{array}{ll}A & B \\ B^{\top} & C\end{array}\right] \mapsto\left[\begin{array}{cc}A & J-B \\ J^{\top}-B^{\top} & C\end{array}\right]$

	$\operatorname{srg}(v, k, \lambda, \mu)$	switched spectrum
Muzychuk-Kin	$(36,14,7,4)$	$\left\{[21]^{1},[5]^{7},[-2]^{28}\right\}$
Martin	$(105,72,51,45)$	$\left\{[60]^{1},[9]^{21},[-3]^{83}\right\}$
Van Dam	$(176,49,12,14)$	$\left\{[61]^{1},[5]^{97},[-7]^{78}\right\}$
Van Dam	$(256,105,44,42)$	$\left\{[121]^{1},[9]^{104},[-7]^{151}\right\}$
Van Dam	$(126,45,12,18)$	$\left\{[57]^{1},[3]^{89},[-9]^{36}\right\}$
\vdots		\vdots

Suppose A, C have orders v_{A}, v_{C} and $A \mathbf{1}=a \mathbf{1}, C \mathbf{1}=c \mathbf{1}$.
Works if $\left[\begin{array}{cc}a & v_{C}-k+a \\ v_{A}-k+c & c\end{array}\right] \& \operatorname{srg}(v, k, \lambda, \mu)$ share an eigenvalue.
Van Dam, JCTB (1998)
Muzychuk and Klin, Discrete Math (1998)

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
M_{1}=\left[\begin{array}{cccc}
\mid a & \boxed{b} & c & \boxed{b} \\
\hline \hline b & \mid a & \boxed{b} & \bar{b} \\
\hline c & \bar{b} & \boxed{a} & \bar{b} \\
\hline b & \boxed{b} & \bar{b} & \boxed{a}
\end{array}\right]
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
\begin{gathered}
M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \bar{b} & \boxed{a} & \boxed{b} & \boxed{b} \\
\bar{c} & \bar{b} & \boxed{a} & \boxed{b} \\
\hline b & \bar{b} & \boxed{b} & \boxed{a}
\end{array}\right] \\
M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right]
\end{gathered}
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \stackrel{b}{b} & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \boxed{b} & a & \bar{b} \\
\hline b & \boxed{b} & \boxed{b} & \boxed{a}
\end{array}\right] \quad{ }_{3} \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right] \\
& M_{2}=\left[\begin{array}{ll}
\boxed{a} & \\
& \boxed{a}
\end{array}\right]
\end{aligned}
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \bar{b} \\
\hline b & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \boxed{b} & \boxed{a} & \bar{b} \\
\hline b & \boxed{b} & \boxed{b} & \boxed{a}
\end{array}\right] \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right] \\
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & & \boxed{b} \\
& \boxed{b} & \boxed{a} & \boxed{b} \\
& & &
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline b & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \boxed{b} & \boxed{a} & \bar{b} \\
\hline b & \boxed{b} & \boxed{b} & \boxed{a}
\end{array}\right] \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right] \\
& M_{2}=\left[\begin{array}{llll}
\boxed{a} & b & c & b \\
c & b & a & b \\
& & &
\end{array}\right]
\end{aligned}
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline b & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \boxed{b} & \boxed{a} & \bar{b} \\
\hline b & \boxed{b} & \boxed{b} & \boxed{a}
\end{array}\right] \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right] \\
& M_{2}=\left[\begin{array}{llll}
\boxed{a} & b & c & b \\
\hline \bar{d} & & d & \\
\frac{c}{c} & b & \boxed{a} & b \\
\hline d & & \bar{d} &
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \hline b & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \bar{b} & \boxed{a} & \bar{b} \\
\hline b & \boxed{b} & \bar{b} & \boxed{a}
\end{array}\right] \quad{ }_{3} \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right] \\
& M_{2}=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & c & b \\
\bar{d} & \boxed{e} & \boxed{d} & \\
\frac{c}{c} & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & & \bar{d} & \boxed{e}
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \stackrel{b}{b} & \boxed{a} & \boxed{b} & \bar{b} \\
\hline c & \boxed{b} & a & \bar{b} \\
\hline b & \boxed{b} & \bar{b} & \boxed{a}
\end{array}\right] \\
& M_{1}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b & a c+2 b^{2}+c a & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a^{2}+3 b^{2} & a b+b a+b^{2}+b c & a b+b a+2 b^{2} \\
a c+2 b^{2}+c a & a b+b a+b^{2}+c b & a^{2}+2 b^{2}+c^{2} & a b+b a+b^{2}+c b \\
a b+b a+b^{2}+b c & a b+b a+2 b^{2} & a b+b a+b^{2}+b c & a^{2}+3 b^{2}
\end{array}\right]
\end{aligned}
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
M_{2}=\left[\begin{array}{cccc}
\mid a & \boxed{b} & c & b \\
\hline \hline d & \boxed{e} & \boxed{d} & \bar{f} \\
\frac{c}{c} & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & \bar{f} & \bar{d} & \boxed{e}
\end{array}\right]
$$

Coherent closure

$$
\begin{gathered}
M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\bar{a} & \boxed{e} & \boxed{d} & \bar{\square} \\
c & b & \boxed{a} & \boxed{b} \\
\boxed{d} & \bar{f} & \bar{d} & \boxed{e}
\end{array}\right] \\
M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right]
\end{gathered}
$$

Coherent closure

$$
M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \hline d & \boxed{e} & \boxed{d} & \bar{f} \\
\cdots & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & \boxed{y} & \boxed{y} & \boxed{e}
\end{array}\right]
$$

$$
M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right]
$$

Coherent closure

[Weisfeiler-Leman stabilisation]

$$
\begin{aligned}
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline a & e & d & \bar{f} \\
\hline c & \boxed{b} & a & \boxed{b} \\
\hline d & f & d & e
\end{array}\right] \\
& M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right] \\
& M_{3}=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & & \boxed{b} \\
& \boxed{b} & \boxed{a} & \boxed{b} \\
& & &
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{gathered}
M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\bar{d} & \boxed{e} & \boxed{d} & \bar{f} \\
c & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & \boxed{f} & \boxed{d} & \boxed{e}
\end{array}\right] \\
M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & \begin{array}{c}
a b+b e+b f+c b \\
d a+d c+e d+f d \\
a c+2 b d+c a \\
d a+d c+e d+f d
\end{array} & \begin{array}{c}
a c+2 b d+c a \\
a d b+e^{2}+f^{2} \\
d a+d c+e d+f d \\
2 d b+e f+f e
\end{array} & \begin{array}{c}
a b+b e+b f+c b \\
a^{2}+2 b d+c^{2} \\
d a+d c+e d+f d
\end{array} \\
a b+b e+b f+c b \\
2 d b+e^{2}+f^{2}
\end{array}\right] \\
M_{3}=\left[\begin{array}{llll}
a & \boxed{b} & c & \boxed{b} \\
c & \boxed{b} & a & \boxed{b}
\end{array}\right]
\end{gathered}
$$

Coherent closure

$$
\begin{aligned}
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline a & e & d & \bar{f} \\
\hline c & \boxed{b} & a & \boxed{b} \\
\hline d & f & d & e
\end{array}\right] \\
& M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right] \\
& M_{3}=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & c & b \\
\hline \frac{d}{l} & & d & \\
\frac{c}{d} & b & \boxed{a} & b \\
\hline d & & \bar{d} &
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline a & e & d & \bar{f} \\
\hline c & \boxed{b} & a & \boxed{b} \\
\hline d & f & d & e
\end{array}\right] \\
& M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right] \\
& M_{3}=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & c & b \\
\hline d & \boxed{e} & \bar{d} & \\
\frac{c}{c} & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & & \bar{d} & \boxed{e}
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline a & e & d & \bar{f} \\
\hline c & \boxed{b} & a & \boxed{b} \\
\hline d & f & d & e
\end{array}\right] \\
& M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right] \\
& M_{3}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline d & \boxed{e} & \bar{d} & \bar{f} \\
\frac{c}{c} & \boxed{b} & \boxed{a} & \bar{b} \\
\hline d & \bar{f} & \bar{d} & \boxed{e}
\end{array}\right]
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& M_{2}=\left[\begin{array}{cccc}
\boxed{a} & \boxed{b} & c & \boxed{b} \\
\hline \hline d & \boxed{e} & \boxed{d} & \bar{f} \\
\hline c & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & \boxed{y} & \boxed{a} & \boxed{e}
\end{array}\right] \\
& M_{2}^{2}=\left[\begin{array}{cccc}
a^{2}+2 b d+c^{2} & a b+b e+b f+c b & a c+2 b d+c a & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e^{2}+f^{2} & d a+d c+e d+f d & 2 d b+e f+f e \\
a c+2 b d+c a & a b+b e+b f+c b & a^{2}+2 b d+c^{2} & a b+b e+b f+c b \\
d a+d c+e d+f d & 2 d b+e f+f e & d a+d c+e d+f d & 2 d b+e^{2}+f^{2}
\end{array}\right] \\
& M_{3}=\left[\begin{array}{ccccc}
\hline a & \boxed{b} & c & b \\
\hline d & e & d & f \\
\hline c & b & a & \frac{b}{c} \\
\hline d & f & \bar{d} & \boxed{e}
\end{array}\right]=M_{2}
\end{aligned}
$$

Coherent closure

$$
\begin{aligned}
& \mathcal{W}(\Gamma)=\left[\begin{array}{llll}
\boxed{a} & b & c & b \\
\hline d & e & \boxed{d} & \bar{f} \\
\frac{c}{c} & \boxed{b} & \boxed{a} & \boxed{b} \\
\hline d & f & d & e
\end{array}\right] \\
& \begin{array}{llllll}
a & b & c & d & e & f
\end{array} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

We say " Γ has coherent rank 6 ".

Coherent rank of graphs with three eigenvalues

Theorem (Muzychuk-Klin 1998)
Let Γ be a connected graph w/ three distinct eigenvalues.
Then the coherent rank of Γ is

- $=3$ iff Γ is strongly regular;
- $\neq 4$;
- $=5$ iff $\Gamma \cong K_{1, b}$ with $b>1$;
- $=6$ iff $\Gamma \cong K_{a, b}$ with $2 \leqslant a<b$ or
Γ is a cone over a strongly regular graph;
- $\neq 7$.

Proposition 6.2. For a non-standard graph Γ the cases $\operatorname{dim}(W(\Gamma))=r, r \in\{7,8\}$ are impossible.

$$
\text { non-standard: connected } w / 3 \text { evs, not srg, not } K_{a, b}
$$

Shrikhande cone

Fano graph

Coherent rank: ??

Coherent rank: 6

Symmetric designs

Definition (2-design)

- points: $X=\{1, \ldots, v\}$;
- blocks: $\mathcal{B} \subset\binom{X}{k}$;
- every pair $\{x, y\} \in\binom{X}{2}$ is contained in λ blocks.

Then (X, \mathcal{B}) is called a $2-(v, k, \lambda)$ design.
If $|\mathcal{B}|=v$ then (X, \mathcal{B}) is called symmetric.

Fano plane:
symmetric $2-(7,3,1)$ design

Total graph of a symmetric design

B : incidence matrix of a symmetric 2-design \mathcal{D}.
Total graph of \mathcal{D} :

$$
\left[\begin{array}{cc}
O & B \\
B^{\top} & J-I
\end{array}\right] .
$$

Theorem (Van Dam 1998)

Total graph of a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design spectrum: $\left\{\left[q^{3}\right]^{1},[q-1]^{(q-1) q(q+1)},[-q]^{(q-1) q(q+1)+1}\right\}$.

Fano graph:

$$
(q=2)
$$

Graphs with coherent rank 8

B : incidence matrix of a symmetric 2 -design \mathcal{D}.
Total graph of \mathcal{D} : $\left[\begin{array}{cc}O & B \\ B^{\top} & J-I\end{array}\right]$.

Theorem (GG and Yip 2023+)

Let Γ be a connected graph $w /$ three distinct eigenvalues. Then $\mathcal{W}(\Gamma)$ has rank 8 if and only if Γ is the total graph of a symmetric $2-\left(q^{3}-q+1, q^{2}, q\right)$ design.

$$
\begin{aligned}
\mathcal{W}(\Gamma) & =a\left[\begin{array}{ll}
I & O \\
0 & O
\end{array}\right]+b\left[\begin{array}{cc}
J-I & O \\
O & O
\end{array}\right]+c\left[\begin{array}{ll}
O & B \\
O & O
\end{array}\right]+d\left[\begin{array}{ccc}
O & J-B \\
O & O
\end{array}\right] \\
& +e\left[\begin{array}{ccc}
O & O \\
B^{\top} & O
\end{array}\right]+f\left[\begin{array}{cc}
O & O \\
J-B^{\top} & O
\end{array}\right]+g\left[\begin{array}{ll}
0 & O \\
O & I
\end{array}\right]+h\left[\begin{array}{ccc}
O & O \\
O & I-I
\end{array}\right]
\end{aligned}
$$

Quasi-symmetric designs

Definition (quasi-symmetric design)
A 2- (v, k, λ) design (X, \mathcal{B}) is called quasi-symmetric if $\forall B_{1} \neq B_{2}$ in \mathcal{B} we have $\left|B_{1} \cap B_{2}\right| \in\{x, y\}$ with $x \neq y$.
x and y are called intersection numbers.

quasi-symmetric $2-(4,2,1)$ design

 intersection numbers: 0 and 1Definition (block graph)
The x-block graph of (X, \mathcal{B}) has vertex set \mathcal{B}, and two blocks are adjacent iff they intersect in x points.

Total graph of a quasi-symmetric design

B: incidence matrix of a quasi-symmetric 2-design \mathcal{Q}.
C : adjacency matrix of the x-block graph of \mathcal{Q}.
x-total graph of $\mathcal{Q}:\left[\begin{array}{cc}O & B \\ B^{\top} & C\end{array}\right]$.

Theorem (Van Dam 1998)

The q-total graph of a quasi-symmetric $2-\left(q^{3}, q^{2}, q+1\right)$ design with intersection numbers 0 and q has spectrum:

$$
\left.\left.\left\{\left[q^{3}+q^{2}+q\right]^{1},[q]\right]^{\beta^{3}-1},[-q]\right]^{3}+q^{2}+q\right\}
$$

- Case $q=2$ discovered earlier by Bridges and Mena (1981)

Type of a coherent closure

$$
\mathcal{W}(\Gamma)=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & c & b \\
\hline d & \boxed{e} & \boxed{d} & \bar{f} \\
c & b & \boxed{a} & \boxed{b} \\
\hline d & f & \bar{d} & \boxed{e}
\end{array}\right]
$$

\downarrow reorder vertices \downarrow

$$
\left[\begin{array}{cccc}
a & c & b & b \\
\hdashline c & a & \bar{b} & \bar{b} \\
\hdashline d & d & e & f \\
\hline d & d & f & e
\end{array}\right]
$$

$\mathcal{W}(\Gamma)$ has type:
$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Type of a coherent closure

$$
\mathcal{W}(\Gamma)=\left[\begin{array}{llll}
\boxed{a} & \boxed{b} & c & b \\
\hline d & \boxed{e} & \boxed{d} & \bar{f} \\
c & b & \boxed{a} & \boxed{b} \\
\hline d & f & \bar{d} & \boxed{e}
\end{array}\right]
$$

\downarrow reorder vertices \downarrow
coherent rank $=$ sum of entries

Graphs with coherent rank 9

Theorem (GG and Yip 2023+)
Let Γ be a connected graph $w /$ three distinct eigenvalues. Then $\mathcal{W}(\Gamma)$ has rank 9 if and only if Γ or $\bar{\Gamma}$ is a total graph of certain quasi-symmetric 2-designs. (Type $\left[\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right]$)

- Muzychuk-Klin 1998: quasi-sym 2-($8,6,15$) design with intersection numbers 4 and 5 .
- Van Dam 1998: quasi-sym 2- $\left(q^{3}, q^{2}, q+1\right)$ designs with intersection numbers 0 and q.

Graphs with coherent rank 9

Theorem (GG and Yip 2023+)

Let Γ be a connected graph $w /$ three distinct eigenvalues. Then $\mathcal{W}(\Gamma)$ has rank 9 if and only if Γ or $\bar{\Gamma}$ is a total graph of certain quasi-symmetric 2 -designs. (Type $\left[\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right]$)

$(v, k, \lambda ; x, y)$	Spectrum	Exists
$(76,40,52 ; 24,20)$	$\left\{[125]^{1},[11]^{75},[-5]^{190}\right\}$	$?$
$(120,50,35 ; 25,20)$	$\left\{[153]^{1},[9]^{119},[-6]^{204}\right\}$	$?$
$(141,45,33 ; 9,15)$	$\left\{[175]^{1},[5]^{329},[-13]^{140}\right\}$	$?$
$(121,46,69 ; 16,21)$	$\left\{[368]^{1},[5]^{483},[-23]^{121}\right\}$	$?$
$(85,40,130 ; 15,20)$	$\left\{[224]^{1},[4]^{595},[-31]^{84}\right\}$	$?$
$(225,36,10 ; 0,6)$	$\left\{[384]^{1},[9]^{224},[-6]^{400}\right\}$	$?$
$(120,75,370 ; 50,45)$	$\left\{[476]^{1},[44]^{119},[-6]^{952}\right\}$	$?$
$(232,112,296 ; 48,56)$	$\left\{[539]^{1},[7]^{1276},[-41]^{231}\right\}$	$?$
\vdots	\vdots	\vdots

Switching strongly regular graphs

Switching: $\left[\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right] \mapsto\left[\begin{array}{cc}A & J-B \\ J^{\top}-B^{\top} & C\end{array}\right]$

	$\operatorname{srg}(v, k, \lambda, \mu)$	switched spectrum	rank
Murychuk-Kin	$(36,14,7,4)$	$\left.\left\{[21]^{1},[5]\right]^{7},[-2]^{28}\right\}$	9
Van Dam	$(176,49,12,14)$	$\left\{[61]^{1},[5]^{97,},[-7]^{88}\right\}$	134
Van Dam	$(126,45,12,18)$	$\left\{[57]^{1},[3]^{999},[-9]^{36}\right\}$	1222
Van Dam	$(256,105,44,42)$	$\left\{[121]^{1},[9]^{104},[-7]^{151}\right\}$	2048
Martin	$(105,72,51,45)$	$\left\{\left[6011^{1},[9]^{21},[-3]^{883}\right\}\right.$	2893
Van Dam	$(625,288,133,132)$	$\left\{\left[31311^{1},[13]^{287} 7,[-12]^{337}\right\}\right.$	15625
$\operatorname{Van} \operatorname{Dam}$	$(729,390,207,210)$	$\left\{[363]^{1},[12]^{391},[-15]^{337}\right\}$	19683

Question: Is arbitrarily large rank possible?
Van Dam, JCTB (1998)
Muzychuk and Klin, Discrete Math (1998)

Switching Latin square graphs

Latin square: $n \times n$ matrix over $\{1, \ldots, n\}$ s.t. each element occurs precisely once in each row and column. X and Y are orthogonal if $\left|\left\{\left(X_{i, j}, Y_{i, j}\right) \mid 1 \leqslant i, j \leqslant n\right\}\right|=n^{2}$.

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

1	2	3	4
4	3	2	1
2	1	4	3
3	4	1	2

1	2	3	4
3	4	1	2
4	3	2	1
2	1	4	3

Given mutually orthogonal Latin squares $L^{(1)}, L^{(2)}, \ldots, L^{(m-2)}$, form graph $\mathcal{L}_{m}(n)$ with vertex set $\{(i, j) \mid 1 \leqslant i, j \leqslant n\}$ and

$$
\begin{gathered}
(i, j) \sim(k, l) \text { iff } \begin{array}{l}
\left(i, j, L_{i, j}^{(1)}, \ldots, L_{i, j}^{(m-2)}\right) \\
\left(k, l, L_{k, l}^{(1)}, \ldots, L_{k, l}^{(m-2)}\right)
\end{array} \text { agree in just } 1 \text { place. } \\
\mathcal{L}_{m}(n) \in \operatorname{srg}\left(n^{2}, m(n-1), n-2+(m-1)(m-2), m(m-1)\right)
\end{gathered}
$$

Switching Latin square graphs

Theorem (GG and Yip 2023+)
For $N=\frac{q^{2}}{2}-\frac{q \sqrt{3\left(q^{2}+2\right)}}{6}$, switching $\mathcal{L}_{\frac{q^{2}-1}{2}}\left(q^{2}\right)$ w.r.t.
$N K_{q^{2}}$ results in a graph w/ 3 distinct eigenvalues.

- q an odd prime power $\Longrightarrow \mathcal{L}_{\frac{q^{2}-1}{2}}\left(q^{2}\right)$ exists.
- $q=a_{k} \Longrightarrow N \in \mathbb{N}$, where: $a_{k}=4 a_{k-1}-a_{k-2}$ and $a_{0}=1, a_{1}=5$.

Examples: $q=5,19,71,3691,1911861,138907099, \ldots$

- Hone et al. (2018) conjecture a_{k} is prime infinitely often.
- Shorey and Stewart (1983): a_{k} is a proper power for only finitely many k.

Graphs with three valencies

Theorem (GG and Yip 2023+)

Let Γ be connected w/ three distinct eigenvalues and three distinct valencies. Then $\operatorname{rank}(\mathcal{W}(\Gamma)) \geqslant 14$.

Valencies	Spectrum	Coherent rank
$\left\{[45]^{1},[25]^{18},[13]^{27}\right\}$	$\left\{[21]^{1},[3]^{19},[-3]^{26}\right\}$	16
$\left\{[15]^{4},[10]^{16},[7]^{4}\right\}$	$\left\{[11]^{1},[3]^{,},[-2]^{16}\right\}$	18
$\left\{[96]^{1},[61]^{64},[21]^{32}\right\}$	$\left\{[56]^{1},[4]^{41},[-4]^{55}\right\}$	20
$\left\{[24]^{18},[14]^{9},[8]^{9}\right\}$	$\left\{[20]^{1},[2]^{\left.17^{\prime},[-3]^{18}\right\}}\right\}$	29
$\left\{[24]^{18},[14]^{9},[8]^{9}\right\}$	$\left\{[20]^{1},[2]^{17},[-3]^{18}\right\}$	240
$\left\{[35]^{1},[26]^{7},[19]^{35}\right\}$	$\left\{[21]^{1},\left[\frac{-1 \pm \sqrt{41}]^{21}}{2}\right\}\right.$	949
$\left\{[35]^{1},[26]^{7},[19]^{35}\right\}$	$\left\{[21]^{1},\left[\frac{-1 \pm \sqrt{41}}{2}\right]^{21}\right\}$	1849

Bridges and Mena, Aequationes Math. (1981)
Van Dam, JCTB (1998); De Caen et al., JCTA (1999)
Cheng et al., European J. Combin. (2016)

Graphs with three valencies

Theorem (GG and Yip 2023+)
Let Γ be connected $\mathrm{w} /$ three distinct eigenvalues and three distinct valencies. Then $\operatorname{rank}(\mathcal{W}(\Gamma)) \geqslant 14$.
$\mathcal{Q}:$ quasi-symmetric $2-(85,35,34)$ design with intersection numbers 10 and 15 .
Γ : cone over the total graph of \mathcal{Q}.
Properties of Γ :

- valencies $\left\{[289]^{1},[169]^{85},[64]^{204}\right\}$;
- spectrum $\left\{[119]^{1},[4]^{204},[-11]^{85}\right\}$;
- coherent rank 14 .

DRACK $_{n}$ and LSSD

Van Dam 1998: infinite family of graphs $w /$ three distinct eigenvalues and coherent rank 10.

$$
\left[\begin{array}{cccc}
J-I & B & B & B
\end{array}\right]
$$

B : incidence matrix of symmetric $2-\left(4 t^{2}, 2 t^{2}-t, t^{2}-t\right)$ design.

Known to exist when $t=2^{i}$ with $i \geqslant 1$.

Van Dam 1998: another rank-10 construction from a Linked System of Symmetric Designs.

Both constructions have type $\left[\begin{array}{ll}2 & 2 \\ 2 & 4\end{array}\right]$. Is type $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ possible?

More questions

Question.

Do there exist connected graphs with three distinct eigenvalues and coherent rank 11?

- Infinite families known for ranks $3,5,6,8,9,10$.

Question (De Caen 1999).

Does a connected graph with three distinct eigenvalues have at most three distinct valencies?

- Cheng et al. (2016): Yes, when complement is disconnected.
- Van Dam et al. (2015): Connected graphs with four distinct eigenvalues can have arbitrarily many distinct valencies.

Thanks!

