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Preliminaries

Bac d

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph ' = (V,E) is a
collection & of edge-disjoint subgraphs of I', each isomorphic to H,
whose edge sets partition the edge set E of .
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outline
/OrK

Definition (Automorphism of a graph) |

An automorphism of [ is a permutation of the vertex set V of I’
which leaves the edge set E of " invariant.

Definition (G-transitive decomposition) |
Let G be an automorphism group of the graph I'. We say that the

H-decomposition Z of I is G-transitive if the following two
conditions hold.

© G leaves Z invariant, that is for all He &2 and g € G, we
have H8 € 9.

@ G acts transitively on &, that is for any Hi, H> € &, there
exists a g € G such that HS = H,.

If these conditions hold then we call the triple (G,I,Z) a transitive

H-decomposition.
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Preliminaries
B.

Theorem (D and Devillers 2023+)

Let T be a graph and H be a subgraph of I'. Suppose that

G < Aut(I) is semiregular on the edges of I and H contains
exactly one edge from each edge orbit of T under G. Then H® is a
G-transitive H-decomposition of T of size |G]|.
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Example

Let ' = K9 and we denote the vertex set of I' by {1,2,3,...,9}.
Let G =((1,4,7)(2,5,8)(3,6,9)) of order 3. We have listed the
edge orbits of Ky under G and highlighted the edges of H.

Orbit 1:
Orbit 3:
Orbit 5:
Orbit 7:
Orbit 9:
Orbit 11:

[{1.4},{4,7},{7,1}]
[{3,6},{6,9},{9,3}]
[{1,5},{4,8},{7,2}]
[{2,3},{5.6},{8,9}]
[{2,6},{5,9},{8,3}]
[{3,5},{6,8},{9,2}]

Orbit 2: [{2,5},{5,8},{8,2}]
Orbit 4: [{1,2},{4,5},{7,8}]
Orbit 6: [{1,6},{4,9},{7,3}]
Orbit 8: [{2,4},{5,7},{8,1}]
Orbit 10: [{3,7},{6,1},{9,4}]
Orbit 12: [{3,9},16,3},{9,6}]
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Figure: G-transitive
H-decomposition of Kqy
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Preliminaries
Backeround

Theorem (D and Devillers 2023+) |

A transitive n(n—1)-path decomposition of K,OK, exists for all
odd primes n.
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Definition (Cartesian product of complete graphs)

Let I = K,OOK,,, be the Cartesian product of the complete graphs
K, and Kp,. The graph I may be viewed as a 2-dimensional ‘grid’
consisting of ‘horizontal’ copies of K}, and ‘vertical’ copies of K.

e Let V(I') and E(T) be the vertex set and edge set of I'
respectively.

@ Let Z, be the additive group of integers modulo n.
@ We label the vertices of I as ordered pairs (a,b) € Zp X Zp,.

@ We define the edges of ' as follows: for any
(a,b),(c,d) e V(I), {(a,b),(c,d)} € E(T') whenever a= c or
b=d.
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Background

Example

[ = K3K4 where each horizontal line induces a K4 and each
vertical line induces a K3.

0.1 0.2

(0,0) (0.3)
1T 12

(1.0) (1)

(2.0) (23)
(21) (22)
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Definition (Array representation of a walk)

Let W =wwvivo...vy_1v be an f-walk in T.

For a given walk W with fixed vg, we can define an array
q = [a1,a2,...,a¢] such that a; = v; —v;_1 for 1 </ </ and
EIEN

This implies a; € {(c,0),(0,c')|c € Z}, and ¢’ € Z7,}.

Conversely, a given vy and array 7 determines W since
Vi=vo+Y,—13g.

We write W = W(w, 7).
If W(vo, @) is a path, then we denote it by P(vp, 3).
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Background

Example

A 12-path P = P((0,0), 3) where

F =[01,01,01,10,10,10,02,20, 03,02, 20,30].

(0,0)
(1,0)
(2,0)
@1 22)
(3,0)
(3.1) (3.2)

(0.3)

(33)
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Lemma

An (-walk W = W(w, @) is an L-path if and only if

—ir13g 7 (0,0) for all 0 <i<j< L.

Proof. ‘
An (-walk is an ¢-path if and only if v; # v; whenever i < j for all
vi,vj € V(W). That is an {-walk is an /-path if and only if

Vo+ i1 3¢ # Vo+ Ly 3, simplified to Y7, ag # (0,0), for

all 0<i<j<L.
O
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Definition (Group - G)

o Consider the cyclic permutation of V/(I') defined by
c(a,b) =(a+1,b) for all (a,b) € Zp X Zp.
@ Let G = (c), which permutes the rows cyclically.

@ This implies that the order of G is n.

Definition (Horizontal edge orbits)

Each horizontal edge orbit under G can be denoted as the set
{{(a,b1),(a,b2)} € E(I")|a € Zp} for fixed by # by € Zp,.

Definition (Vertical edge orbits)

Each vertical edge orbit under G can be denoted as the set

{{(a,b),(a+t,b)} € E(T)|a € Z,} for fixed t € Z}, and b € Zp,.
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Preliminarie

Background

Lemma

Let n be an odd integer and I = K,[L1K,,.
(a) There are (’;’) horizontal edge orbits of size n under G.

(b) There are w vertical edge orbits of size n under G.

By the orbit-stabilizer theorem, it follows that the stabilizer G, of
e under the group G is trivial thus we have the following corollary.

Corollary

Let n be an odd integer and I = K,L1K,,. Then G acts
semiregularly on E(T).
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We denote the first coordinate and second coordinate of an
ordered pair v by v; and v, respectively. If v =(a,b), then vi = a
and v» = b.

Lemma

\
Any two distinct edges {v,w} and {v/,w'} of E(I') are in the same
edge orbit under G if and only if

(a) w=vjandw—v=w'—V or,

(b) w=wj andw—v=v—w'.
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Lemma

\
Consider an ¢-path P = P(vo,?) inT. For0<i<j </ we define

the following conditions:

(a) (Z{g:prl ag)Z #0orajy1 # adj+1,

(b) (21;;1;4-1 ag)2 # 0 or aj11 # —aji1.
Then P contains at most one edge from each edge orbit under G if
and only if (a) and (b) hold for all i,j € {0,1,...,0 —1} with i <.
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Theorem (D and Devillers 2023+)

A transitive n(n— 1)-path decomposition of K,OOK,, exists for all
odd primes n.

Theorem (D and Devillers 2023+)

Let T be a graph and H be a subgraph of I'. Suppose that

G < Aut(I) is semiregular on the edges of I and H contains
exactly one edge from each edge orbit of I under G. Then H® is a
G-transitive H-decomposition of I of size |G|.
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Example

A 6-path P = P((0
Ef ::[(071)7(170)7(

0),F) in K3K3 with
1,0),(0,1),(2,0)].

(0,0) (0,2)

(1.0)

(2.0)

(22)
(21)

Figure: The 6-path is represented by the red edges.
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Example
7 =1(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)].

(0,0) (0,2)

(1,0)

(2,0)

(2.2)
(21)

Figure: P = P((0,0),d) in red, P’ = P = P((1,0), ) in blue and
P" = P<* = P((2,0),7) in black.

19/24



Example

A 20-path P = P((0,0),7) in Ks[IKs with
& =1(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(2,0),
(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(4,0)]
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Proof outline

© Staircase array: For an odd integer n, we refer to an array El
in the form of

[(0,1),(1,0),...,(0,1),(2,0),(0,3),(3,0),...,(0,3),(4,0),
...,(0,n=2),(n—2,0)...,(0,n—2),(n—1,0)]

as the staircase array.

@ Proved that when n is an odd prime, vo = (0,0) and 7 is the
staircase array, P = P(v, @) represents an n(n— 1)-path in
KyOKh.

© Moreover, proved that P contains exactly one edge from each
edge orbit.

Q G is semiregular on E(K,OK},), therefore PG is a G-transitive
n(n—1)-path decomposition of K,[JK,.

22/24



e We were mainly focusing on the group G = (c) where
c(a,b) =(a+1,b) for all (a,b) € Zp X Zp. In this case, we
need n to be odd to maintain the semiregular action on the
edges.

e We also found L-transitive n(n—1)-path decompositions of
Zin X Ly when n=2,3,4, for L = (c’) where
c’(a,b) =(a+1,b+1) forall (a,b) € Zp X Zp.

For example, for n =4, we take H = P((0,0), ) where

=[(0,1),(0,1),(0,1),(1,0),(1,0),(1,0),
(0,2),(2,0),(0,3),(2,0),(0,2),(3,0)]

and decomposition HE.
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@ Another interesting question would be considering K,1K,, for
distinct n and m (rectangular grid), and various possible
subgraphs, not just a path.
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