arXiv:2308.07684

Transitive path decompositions of Cartesian products of complete graphs

Ajani De Vas Gunasekara (Monash University)

joint work with

Alice Devillers (UWA)

Definition (*H*-decomposition)

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Let *H* be a graph, an *H*-decomposition of a graph $\Gamma = (V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ , each isomorphic to *H*, whose edge sets partition the edge set *E* of Γ .

Definition (Automorphism of a graph)

An *automorphism* of Γ is a permutation of the vertex set V of Γ which leaves the edge set E of Γ invariant.

Definition (G-transitive decomposition)

Let G be an automorphism group of the graph Γ . We say that the H-decomposition \mathscr{D} of Γ is G-transitive if the following two conditions hold.

- G leaves \mathscr{D} invariant, that is for all $H \in \mathscr{D}$ and $g \in G$, we have $H^g \in \mathscr{D}$.
- ② *G* acts transitively on \mathscr{D} , that is for any $H_1, H_2 \in \mathscr{D}$, there exists a *g* ∈ *G* such that $H_1^g = H_2$.

If these conditions hold then we call the triple (G, Γ, \mathscr{D}) a *transitive H*-decomposition.

Theorem (D and Devillers 2023+)

Let Γ be a graph and H be a subgraph of Γ . Suppose that $G \leq \operatorname{Aut}(\Gamma)$ is semiregular on the edges of Γ and H contains exactly one edge from each edge orbit of Γ under G. Then H^G is a G-transitive H-decomposition of Γ of size |G|.

Example

Let $\Gamma = K_9$ and we denote the vertex set of Γ by $\{1, 2, 3, \dots, 9\}$. Let $G = \langle (1,4,7)(2,5,8)(3,6,9) \rangle$ of order 3. We have listed the edge orbits of K_9 under G and highlighted the edges of H. Orbit 1: [{**1**,**4**}, {4,7}, {7,1}] Orbit 2: [{2,5}, {5,8}, {**8,2**}] [{3,6},{6,9},{**9,3**}] Orbit 4: [{1,2}, {**4,5**}, {7,8}] Orbit 3: Orbit 5: $[\{1,5\},\{4,8\},\{7,2\}]$ Orbit 6: [{1,6}, {4,9}, {**7,3**}] Orbit 7: [{2,3}, {**5,6**}, {8,9}] Orbit 8: [{2,4}, {**5,7**}, {8,1}] Orbit 9: [{**2,6**}, {5,9}, {8,3}] Orbit 10: [{**3**,**7**}, {6,1}, {9,4}] Orbit 12: [{**3**,**9**}, {6,3}, {9,6}] Orbit 11: [{3,5}, {**6,8**}, {9,2}]

Figure: H

Figure: G-transitive H-decomposition of K_9

Theorem (D and Devillers 2023+)

A transitive n(n-1)-path decomposition of $K_n \Box K_n$ exists for all odd primes n.

Definition (Cartesian product of complete graphs)

Let $\Gamma = K_n \Box K_m$ be the *Cartesian product* of the complete graphs K_n and K_m . The graph Γ may be viewed as a 2-dimensional 'grid' consisting of 'horizontal' copies of K_m and 'vertical' copies of K_n .

- Let V(Γ) and E(Γ) be the vertex set and edge set of Γ respectively.
- Let \mathbb{Z}_n be the additive group of integers modulo n.
- We label the vertices of Γ as ordered pairs $(a,b) \in \mathbb{Z}_n \times \mathbb{Z}_m$.
- We define the edges of Γ as follows: for any
 (a,b), (c,d) ∈ V(Γ), {(a,b), (c,d)} ∈ E(Γ) whenever a = c or
 b = d.

Example

 $\Gamma = K_3 \Box K_4$ where each horizontal line induces a K_4 and each vertical line induces a K_3 .

Definition (Array representation of a walk)

Let $W = v_0 v_1 v_2 \dots v_{\ell-1} v_\ell$ be an ℓ -walk in Γ .

For a given walk W with fixed v_0 , we can define an array $\overrightarrow{a} = [a_1, a_2, \dots, a_\ell]$ such that $a_i = v_i - v_{i-1}$ for $1 \le i \le \ell$ and $|\overrightarrow{a}| = \ell$.

This implies $a_i \in \{(c,0), (0,c') | c \in \mathbb{Z}_n^* \text{ and } c' \in \mathbb{Z}_m^*\}$.

Conversely, a given v_0 and array \overrightarrow{a} determines W since $v_i = v_0 + \sum_{g=1}^{i} a_g$.

We write $W = W(v_0, \overrightarrow{a})$.

If $W(v_0, \overrightarrow{a})$ is a path, then we denote it by $P(v_0, \overrightarrow{a})$.

Example

A 12-path $P = P((0,0), \vec{a})$ where $\vec{a} = [01, 01, 01, 10, 10, 10, 02, 20, 03, 02, 20, 30].$

Lemma

An
$$\ell$$
-walk $W = W(v_0, \overrightarrow{a})$ is an ℓ -path if and only if $\sum_{g=i+1}^{j} a_g \neq (0,0)$ for all $0 \leq i < j \leq \ell$.

Proof.

An ℓ -walk is an ℓ -path if and only if $v_i \neq v_j$ whenever i < j for all $v_i, v_j \in V(W)$. That is an ℓ -walk is an ℓ -path if and only if $v_0 + \sum_{g=1}^i a_g \neq v_0 + \sum_{g=1}^j a_g$, simplified to $\sum_{g=i+1}^j a_g \neq (0,0)$, for all $0 \leq i < j \leq \ell$.

Definition (Group - G)

- Consider the cyclic permutation of $V(\Gamma)$ defined by c(a,b) = (a+1,b) for all $(a,b) \in \mathbb{Z}_n \times \mathbb{Z}_m$.
- Let $G = \langle c \rangle$, which permutes the rows cyclically.
- This implies that the order of G is n.

Definition (Horizontal edge orbits)

Each horizontal edge orbit under *G* can be denoted as the set $\{\{(a, b_1), (a, b_2)\} \in E(\Gamma) | a \in \mathbb{Z}_n\}$ for fixed $b_1 \neq b_2 \in \mathbb{Z}_m$.

Definition (Vertical edge orbits)

Each vertical edge orbit under G can be denoted as the set $\{\{(a,b), (a+t,b)\} \in E(\Gamma) | a \in \mathbb{Z}_n\}$ for fixed $t \in \mathbb{Z}_n^*$ and $b \in \mathbb{Z}_m$.

Lemma

Let n be an odd integer and $\Gamma = K_n \Box K_m$. (a) There are $\binom{m}{2}$ horizontal edge orbits of size n under G. (b) There are $\frac{m(n-1)}{2}$ vertical edge orbits of size n under G.

By the orbit-stabilizer theorem, it follows that the stabilizer G_e of e under the group G is trivial thus we have the following corollary.

Corollary

Let n be an odd integer and $\Gamma = K_n \Box K_m$. Then G acts semiregularly on $E(\Gamma)$.

We denote the first coordinate and second coordinate of an ordered pair v by v_1 and v_2 respectively. If v = (a, b), then $v_1 = a$ and $v_2 = b$.

Lemma

Any two distinct edges $\{v, w\}$ and $\{v', w'\}$ of $E(\Gamma)$ are in the same edge orbit under G if and only if (a) $v_2 = v'_2$ and w - v = w' - v' or, (b) $v_2 = w'_2$ and w - v = v' - w'.

Lemma

Consider an ℓ -path $P = P(v_0, \overrightarrow{a})$ in Γ . For $0 \le i < j < \ell$ we define the following conditions:

(a)
$$(\sum_{g=i+1}^{j} a_g)_2 \neq 0$$
 or $a_{i+1} \neq a_{j+1}$,

(b)
$$(\sum_{g=i+1}^{j+1} a_g)_2 \neq 0$$
 or $a_{i+1} \neq -a_{j+1}$.

Then P contains at most one edge from each edge orbit under G if and only if (a) and (b) hold for all $i, j \in \{0, 1, ..., \ell - 1\}$ with i < j.

Theorem (D and Devillers 2023+) A transitive n(n-1)-path decomposition of $K_n \Box K_n$ exists for all odd primes n.

Theorem (D and Devillers 2023+)

Let Γ be a graph and H be a subgraph of Γ . Suppose that $G \leq \operatorname{Aut}(\Gamma)$ is semiregular on the edges of Γ and H contains exactly one edge from each edge orbit of Γ under G. Then H^G is a G-transitive H-decomposition of Γ of size |G|.

Example

A 6-path $P = P((0,0), \vec{a})$ in $K_3 \Box K_3$ with $\vec{a} = [(0,1), (1,0), (0,1), (1,0), (0,1), (2,0)].$

Figure: The 6-path is represented by the red edges.

Example

 $\overrightarrow{a} = [(0,1), (1,0), (0,1), (1,0), (0,1), (2,0)].$

Figure: $P = P((0,0), \overrightarrow{a})$ in red, $P' = P^c = P((1,0), \overrightarrow{a})$ in blue and $P'' = P^{c^2} = P((2,0), \overrightarrow{a})$ in black.

Example

A 20-path $P = P((0,0), \overrightarrow{a})$ in $K_5 \Box K_5$ with $\overrightarrow{a} = [(0,1), (1,0), (0,1), (1,0), (0,1), (1,0), (0,1), (1,0), (0,1), (2,0), (0,3), (3,0), (0,3), (3,0), (0,3), (3,0), (0,3), (4,0)]$

Staircase array: For an odd integer n, we refer to an array a in the form of

 $[(0,1),(1,0),\ldots,(0,1),(2,0),(0,3),(3,0),\ldots,(0,3),(4,0),\\\ldots,(0,n-2),(n-2,0)\ldots,(0,n-2),(n-1,0)]$

as the *staircase array*.

- Proved that when n is an odd prime, v₀ = (0,0) and \overrightarrow{a} is the staircase array, P = P(v₀, \overrightarrow{a}) represents an n(n−1)-path in K_n□K_n.
- Moreover, proved that P contains exactly one edge from each edge orbit.
- G is semiregular on $E(K_n \Box K_n)$, therefore P^G is a G-transitive n(n-1)-path decomposition of $K_n \Box K_n$.

- We were mainly focusing on the group G = ⟨c⟩ where c(a,b) = (a+1,b) for all (a,b) ∈ Z_n × Z_m. In this case, we need n to be odd to maintain the semiregular action on the edges.
- We also found *L*-transitive n(n-1)-path decompositions of $\mathbb{Z}_n \times \mathbb{Z}_n$ when n = 2, 3, 4, for $L = \langle c' \rangle$ where c'(a, b) = (a+1, b+1) for all $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_n$.

For example, for n = 4, we take $H = P((0,0), \overrightarrow{a})$ where

$$\vec{a} = [(0,1), (0,1), (0,1), (1,0), (1,0), (1,0), (0,2), (2,0), (0,3), (2,0), (0,2), (3,0)]$$

and decomposition H^L .

 Another interesting question would be considering K_n□K_m for distinct n and m (rectangular grid), and various possible subgraphs, not just a path.