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Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph Γ = (V ,E ) is a
collection D of edge-disjoint subgraphs of Γ, each isomorphic to H,
whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K8
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Definition (Automorphism of a graph)

An automorphism of Γ is a permutation of the vertex set V of Γ
which leaves the edge set E of Γ invariant.

Definition (G -transitive decomposition)

Let G be an automorphism group of the graph Γ. We say that the
H-decomposition D of Γ is G -transitive if the following two
conditions hold.

1 G leaves D invariant, that is for all H ∈ D and g ∈ G , we
have Hg ∈ D .

2 G acts transitively on D , that is for any H1,H2 ∈ D , there
exists a g ∈ G such that Hg

1 = H2.

If these conditions hold then we call the triple (G ,Γ,D) a transitive
H-decomposition.
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Theorem (D and Devillers 2023+)

Let Γ be a graph and H be a subgraph of Γ. Suppose that
G ⩽ Aut(Γ) is semiregular on the edges of Γ and H contains
exactly one edge from each edge orbit of Γ under G . Then HG is a
G -transitive H-decomposition of Γ of size |G |.
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Example

Let Γ = K9 and we denote the vertex set of Γ by {1,2,3, . . . ,9}.
Let G = ⟨(1,4,7)(2,5,8)(3,6,9)⟩ of order 3. We have listed the
edge orbits of K9 under G and highlighted the edges of H.
Orbit 1: [{1,4},{4,7},{7,1}] Orbit 2: [{2,5},{5,8},{8,2}]
Orbit 3: [{3,6},{6,9},{9,3}] Orbit 4: [{1,2},{4,5},{7,8}]
Orbit 5: [{1,5},{4,8},{7,2}] Orbit 6: [{1,6},{4,9},{7,3}]
Orbit 7: [{2,3},{5,6},{8,9}] Orbit 8: [{2,4},{5,7},{8,1}]
Orbit 9: [{2,6},{5,9},{8,3}] Orbit 10: [{3,7},{6,1},{9,4}]
Orbit 11: [{3,5},{6,8},{9,2}] Orbit 12: [{3,9},{6,3},{9,6}]
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Figure: G -transitive
H-decomposition of K9
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Theorem (D and Devillers 2023+)

A transitive n(n−1)-path decomposition of Kn□Kn exists for all
odd primes n.
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Definition (Cartesian product of complete graphs)

Let Γ = Kn□Km be the Cartesian product of the complete graphs
Kn and Km. The graph Γ may be viewed as a 2-dimensional ‘grid’
consisting of ‘horizontal’ copies of Km and ‘vertical’ copies of Kn.

Let V (Γ) and E (Γ) be the vertex set and edge set of Γ
respectively.

Let Zn be the additive group of integers modulo n.

We label the vertices of Γ as ordered pairs (a,b) ∈ Zn×Zm.

We define the edges of Γ as follows: for any
(a,b),(c ,d) ∈ V (Γ), {(a,b),(c ,d)} ∈ E (Γ) whenever a= c or
b = d .
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Example

Γ = K3□K4 where each horizontal line induces a K4 and each
vertical line induces a K3.

(0,0)

(0,1) (0,2)

(0,3)

(1,0)

(1,1) (1,2)

(1,3)

(2,0)

(2,1) (2,2)

(2,3)
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Definition (Array representation of a walk)

Let W = v0v1v2 . . .vℓ−1vℓ be an ℓ-walk in Γ.

For a given walk W with fixed v0, we can define an array
−→a = [a1,a2, . . . ,aℓ] such that ai = vi −vi−1 for 1⩽ i ⩽ ℓ and
|−→a |= ℓ.

This implies ai ∈ {(c ,0),(0,c ′)|c ∈ Z∗
n and c ′ ∈ Z∗

m}.

Conversely, a given v0 and array −→a determines W since
vi = v0+∑

i
g=1 ag .

We write W =W (v0,
−→a ).

If W (v0,
−→a ) is a path, then we denote it by P(v0,

−→a ).
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Example

A 12-path P = P((0,0),−→a ) where
−→a = [01,01,01,10,10,10,02,20,03,02,20,30].

(0,0)

(0,1) (0,2)

(0,3)

(1,0)

(1,1) (1,2)

(1,3)

(2,0)

(2,1) (2,2)

(2,3)

(3,0)

(3,1) (3,2)

(3,3)
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Lemma

An ℓ-walk W =W (v0,
−→a ) is an ℓ-path if and only if

∑
j
g=i+1 ag ̸= (0,0) for all 0⩽ i < j ⩽ ℓ.

Proof.

An ℓ-walk is an ℓ-path if and only if vi ̸= vj whenever i < j for all
vi ,vj ∈ V (W ). That is an ℓ-walk is an ℓ-path if and only if

v0+∑
i
g=1 ag ̸= v0+∑

j
g=1 ag , simplified to ∑

j
g=i+1 ag ̸= (0,0), for

all 0⩽ i < j ⩽ ℓ.

12 / 24



Preliminaries
Background

Results
Proof outline
Future work

Definition (Group - G )

Consider the cyclic permutation of V (Γ) defined by
c(a,b) = (a+1,b) for all (a,b) ∈ Zn×Zm.

Let G = ⟨c⟩, which permutes the rows cyclically.

This implies that the order of G is n.

Definition (Horizontal edge orbits)

Each horizontal edge orbit under G can be denoted as the set
{{(a,b1),(a,b2)} ∈ E (Γ)|a ∈ Zn} for fixed b1 ̸= b2 ∈ Zm.

Definition (Vertical edge orbits)

Each vertical edge orbit under G can be denoted as the set
{{(a,b),(a+ t,b)} ∈ E (Γ)|a ∈ Zn} for fixed t ∈ Z∗

n and b ∈ Zm.
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Lemma

Let n be an odd integer and Γ = Kn□Km.

(a) There are
(m
2

)
horizontal edge orbits of size n under G .

(b) There are m(n−1)
2 vertical edge orbits of size n under G .

By the orbit-stabilizer theorem, it follows that the stabilizer Ge of
e under the group G is trivial thus we have the following corollary.

Corollary

Let n be an odd integer and Γ = Kn□Km. Then G acts
semiregularly on E (Γ).
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We denote the first coordinate and second coordinate of an
ordered pair v by v1 and v2 respectively. If v = (a,b), then v1 = a
and v2 = b.

Lemma

Any two distinct edges {v ,w} and {v ′,w ′} of E (Γ) are in the same
edge orbit under G if and only if

(a) v2 = v ′2 and w −v = w ′−v ′ or,

(b) v2 = w ′
2 and w −v = v ′−w ′.
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Lemma

Consider an ℓ-path P = P(v0,
−→a ) in Γ. For 0⩽ i < j < ℓ we define

the following conditions:

(a) (∑
j
g=i+1 ag )2 ̸= 0 or ai+1 ̸= aj+1,

(b) (∑
j+1
g=i+1 ag )2 ̸= 0 or ai+1 ̸=−aj+1.

Then P contains at most one edge from each edge orbit under G if
and only if (a) and (b) hold for all i , j ∈ {0,1, . . . , ℓ−1} with i < j .
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Theorem (D and Devillers 2023+)

A transitive n(n−1)-path decomposition of Kn□Kn exists for all
odd primes n.

Theorem (D and Devillers 2023+)

Let Γ be a graph and H be a subgraph of Γ. Suppose that
G ⩽ Aut(Γ) is semiregular on the edges of Γ and H contains
exactly one edge from each edge orbit of Γ under G . Then HG is a
G -transitive H-decomposition of Γ of size |G |.
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Example

A 6-path P = P((0,0),−→a ) in K3□K3 with
−→a = [(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)].

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

Figure: The 6-path is represented by the red edges.
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Example
−→a = [(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)].

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

Figure: P = P((0,0),−→a ) in red, P ′ = Pc = P((1,0),−→a ) in blue and

P ′′ = Pc2 = P((2,0),−→a ) in black.
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Example

A 20-path P = P((0,0),−→a ) in K5□K5 with
−→a = [(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(2,0),

(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(4,0)]
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(0,0)

(0,1) (0,2) (0,3)

(0,4)

(1,0)

(1,1) (1,2) (1,3)

(1,4)

(2,0)

(2,1) (2,2) (2,3)

(2,4)

(3,0)

(3,1) (3,2) (3,3)

(3,4)

(4,0)

(4,1) (4,2) (4,3)

(4,4)
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1 Staircase array: For an odd integer n, we refer to an array −→a
in the form of

[(0,1),(1,0), . . . ,(0,1),(2,0),(0,3),(3,0), . . . ,(0,3),(4,0),

. . . ,(0,n−2),(n−2,0) . . . ,(0,n−2),(n−1,0)]

as the staircase array.

2 Proved that when n is an odd prime, v0 = (0,0) and −→a is the
staircase array, P = P(v0,

−→a ) represents an n(n−1)-path in
Kn□Kn.

3 Moreover, proved that P contains exactly one edge from each
edge orbit.

4 G is semiregular on E (Kn□Kn), therefore PG is a G -transitive
n(n−1)-path decomposition of Kn□Kn.
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We were mainly focusing on the group G = ⟨c⟩ where
c(a,b) = (a+1,b) for all (a,b) ∈ Zn×Zm. In this case, we
need n to be odd to maintain the semiregular action on the
edges.

We also found L-transitive n(n−1)-path decompositions of
Zn×Zn when n = 2,3,4, for L= ⟨c ′⟩ where
c ′(a,b) = (a+1,b+1) for all (a,b) ∈ Zn×Zn.

For example, for n = 4, we take H = P((0,0),−→a ) where

−→a =[(0,1),(0,1),(0,1),(1,0),(1,0),(1,0),

(0,2),(2,0),(0,3),(2,0),(0,2),(3,0)]

and decomposition HL.
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Another interesting question would be considering Kn□Km for
distinct n and m (rectangular grid), and various possible
subgraphs, not just a path.

24 / 24


	Preliminaries
	Background
	Results
	Proof outline
	Future work

