Transitive path decompositions of Cartesian products of complete graphs

Ajani De Vas Gunasekara (Monash University)

joint work with

Alice Devillers (UWA)

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)
 Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (H-decomposition)

Let H be a graph, an H-decomposition of a graph $\Gamma=(V, E)$ is a collection \mathscr{D} of edge-disjoint subgraphs of Γ, each isomorphic to H, whose edge sets partition the edge set E of Γ.

Example: 4-star decomposition of K_{8}

Definition (Automorphism of a graph)

An automorphism of Γ is a permutation of the vertex set V of Γ which leaves the edge set E of Γ invariant.

Definition (G-transitive decomposition)

Let G be an automorphism group of the graph Γ. We say that the H-decomposition \mathscr{D} of Γ is G-transitive if the following two conditions hold.
(1) G leaves \mathscr{D} invariant, that is for all $H \in \mathscr{D}$ and $g \in G$, we have $H^{g} \in \mathscr{D}$.
(2) G acts transitively on \mathscr{D}, that is for any $H_{1}, H_{2} \in \mathscr{D}$, there exists a $g \in G$ such that $H_{1}^{g}=H_{2}$.

If these conditions hold then we call the triple (G, Γ, \mathscr{D}) a transitive H-decomposition.

Theorem (D and Devillers 2023+)
Let Γ be a graph and H be a subgraph of Γ. Suppose that $G \leqslant \operatorname{Aut}(\Gamma)$ is semiregular on the edges of Γ and H contains exactly one edge from each edge orbit of Γ under G. Then H^{G} is a G-transitive H -decomposition of Γ of size $|G|$.

Example

Let $\Gamma=K_{9}$ and we denote the vertex set of Γ by $\{1,2,3, \ldots, 9\}$. Let $G=\langle(1,4,7)(2,5,8)(3,6,9)\rangle$ of order 3 . We have listed the edge orbits of K_{9} under G and highlighted the edges of H.
Orbit 1: $\quad[\{\mathbf{1}, \mathbf{4}\},\{4,7\},\{7,1\}]$ Orbit 2: $[\{2,5\},\{5,8\},\{\mathbf{8}, \mathbf{2}\}]$
Orbit 3: $\quad[\{3,6\},\{6,9\},\{\mathbf{9}, \mathbf{3}\}]$ Orbit 4: $[\{1,2\},\{4,5\},\{7,8\}]$
Orbit 5: $\quad[\{\mathbf{1}, \mathbf{5}\},\{4,8\},\{7,2\}]$ Orbit 6: $[\{1,6\},\{4,9\},\{\mathbf{7}, \mathbf{3}\}]$
Orbit 7: $\quad[\{2,3\},\{\mathbf{5}, \mathbf{6}\},\{8,9\}] \quad$ Orbit 8: $[\{2,4\},\{\mathbf{5}, \mathbf{7}\},\{8,1\}]$
Orbit 9: $\quad[\{\mathbf{2}, \mathbf{6}\},\{5,9\},\{8,3\}] \quad$ Orbit 10: $[\{\mathbf{3}, \mathbf{7}\},\{6,1\},\{9,4\}]$
Orbit 11: $[\{3,5\},\{\mathbf{6}, \mathbf{8}\},\{9,2\}]$ Orbit 12: $[\{\mathbf{3}, 9\},\{6,3\},\{9,6\}]$

Preliminaries

Figure: H

Figure: G-transitive H-decomposition of K_{9}

Theorem (D and Devillers 2023+)
A transitive $n(n-1)$-path decomposition of $K_{n} \square K_{n}$ exists for all odd primes n.

Definition (Cartesian product of complete graphs)

Let $\Gamma=K_{n} \square K_{m}$ be the Cartesian product of the complete graphs K_{n} and K_{m}. The graph Γ may be viewed as a 2-dimensional 'grid' consisting of 'horizontal' copies of K_{m} and 'vertical' copies of K_{n}.

- Let $V(\Gamma)$ and $E(\Gamma)$ be the vertex set and edge set of Γ respectively.
- Let \mathbb{Z}_{n} be the additive group of integers modulo n.
- We label the vertices of Γ as ordered pairs $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$.
- We define the edges of Γ as follows: for any $(a, b),(c, d) \in V(\Gamma),\{(a, b),(c, d)\} \in E(\Gamma)$ whenever $a=c$ or $b=d$.

Example

$\Gamma=K_{3} \square K_{4}$ where each horizontal line induces a K_{4} and each vertical line induces a K_{3}.

Definition (Array representation of a walk)

Let $W=v_{0} v_{1} v_{2} \ldots v_{\ell-1} v_{\ell}$ be an ℓ-walk in Γ.
For a given walk W with fixed v_{0}, we can define an array $\vec{a}=\left[a_{1}, a_{2}, \ldots, a_{\ell}\right]$ such that $a_{i}=v_{i}-v_{i-1}$ for $1 \leqslant i \leqslant \ell$ and $|\vec{a}|=\ell$.

This implies $a_{i} \in\left\{(c, 0),\left(0, c^{\prime}\right) \mid c \in \mathbb{Z}_{n}^{*}\right.$ and $\left.c^{\prime} \in \mathbb{Z}_{m}^{*}\right\}$.
Conversely, a given v_{0} and array \vec{a} determines W since $v_{i}=v_{0}+\sum_{g=1}^{i} a_{g}$.
We write $W=W\left(v_{0}, \vec{a}\right)$.
If $W\left(v_{0}, \vec{a}\right)$ is a path, then we denote it by $P\left(v_{0}, \vec{a}\right)$.

Example

A 12-path $P=P((0,0), \vec{a})$ where
$\vec{a}=[01,01,01,10,10,10,02,20,03,02,20,30]$.

Lemma

An ℓ-walk $W=W\left(v_{0}, \vec{a}\right)$ is an ℓ-path if and only if $\sum_{g=i+1}^{j} a_{g} \neq(0,0)$ for all $0 \leqslant i<j \leqslant \ell$.

Proof.

An ℓ-walk is an ℓ-path if and only if $v_{i} \neq v_{j}$ whenever $i<j$ for all $v_{i}, v_{j} \in V(W)$. That is an ℓ-walk is an ℓ-path if and only if $v_{0}+\sum_{g=1}^{i} a_{g} \neq v_{0}+\sum_{g=1}^{j} a_{g}$, simplified to $\sum_{g=i+1}^{j} a_{g} \neq(0,0)$, for all $0 \leqslant i<j \leqslant \ell$.

Definition (Group - G)

- Consider the cyclic permutation of $V(\Gamma)$ defined by $c(a, b)=(a+1, b)$ for all $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$.
- Let $G=\langle c\rangle$, which permutes the rows cyclically.
- This implies that the order of G is n.

Definition (Horizontal edge orbits)

Each horizontal edge orbit under G can be denoted as the set $\left\{\left\{\left(a, b_{1}\right),\left(a, b_{2}\right)\right\} \in E(\Gamma) \mid a \in \mathbb{Z}_{n}\right\}$ for fixed $b_{1} \neq b_{2} \in \mathbb{Z}_{m}$.

Definition (Vertical edge orbits)

Each vertical edge orbit under G can be denoted as the set $\left\{\{(a, b),(a+t, b)\} \in E(\Gamma) \mid a \in \mathbb{Z}_{n}\right\}$ for fixed $t \in \mathbb{Z}_{n}^{*}$ and $b \in \mathbb{Z}_{m}$.

Lemma

Let n be an odd integer and $\Gamma=K_{n} \square K_{m}$.
(a) There are $\binom{m}{2}$ horizontal edge orbits of size n under G.
(b) There are $\frac{m(n-1)}{2}$ vertical edge orbits of size n under G.

By the orbit-stabilizer theorem, it follows that the stabilizer G_{e} of e under the group G is trivial thus we have the following corollary.

Corollary

Let n be an odd integer and $\Gamma=K_{n} \square K_{m}$. Then G acts semiregularly on $E(\Gamma)$.

We denote the first coordinate and second coordinate of an ordered pair v by v_{1} and v_{2} respectively. If $v=(a, b)$, then $v_{1}=a$ and $v_{2}=b$.

Lemma

Any two distinct edges $\{v, w\}$ and $\left\{v^{\prime}, w^{\prime}\right\}$ of $E(\Gamma)$ are in the same edge orbit under G if and only if
(a) $v_{2}=v_{2}^{\prime}$ and $w-v=w^{\prime}-v^{\prime}$ or,
(b) $v_{2}=w_{2}^{\prime}$ and $w-v=v^{\prime}-w^{\prime}$.

Lemma

Consider an ℓ-path $P=P\left(v_{0}, \vec{a}\right)$ in Γ. For $0 \leqslant i<j<\ell$ we define the following conditions:
(a) $\left(\sum_{g=i+1}^{j} a_{g}\right)_{2} \neq 0$ or $a_{i+1} \neq a_{j+1}$,
(b) $\left(\sum_{g=i+1}^{j+1} a_{g}\right)_{2} \neq 0$ or $a_{i+1} \neq-a_{j+1}$.

Then P contains at most one edge from each edge orbit under G if and only if (a) and (b) hold for all $i, j \in\{0,1, \ldots, \ell-1\}$ with $i<j$.

Theorem (D and Devillers 2023+)
A transitive $n(n-1)$-path decomposition of $K_{n} \square K_{n}$ exists for all odd primes n.

Theorem (D and Devillers 2023+)
Let Γ be a graph and H be a subgraph of Γ. Suppose that
$G \leqslant \operatorname{Aut}(\Gamma)$ is semiregular on the edges of Γ and H contains exactly one edge from each edge orbit of Γ under G. Then H^{G} is a G-transitive H -decomposition of Γ of size $|G|$.

Example

A 6-path $P=P((0,0), \vec{a})$ in $K_{3} \square K_{3}$ with $\vec{a}=[(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)]$.

Figure: The 6-path is represented by the red edges.

Example

$$
\vec{a}=[(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)] .
$$

Figure: $P=P((0,0), \vec{a})$ in red, $P^{\prime}=P^{c}=P((1,0), \vec{a})$ in blue and $P^{\prime \prime}=P^{c^{2}}=P((2,0), \vec{a})$ in black.

Example

A 20-path $P=P((0,0), \vec{a})$ in $K_{5} \square K_{5}$ with
$\vec{a}=[(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(1,0),(0,1),(2,0)$, $(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(3,0),(0,3),(4,0)]$

(1) Staircase array: For an odd integer n, we refer to an array \vec{a} in the form of

$$
\begin{array}{r}
{[(0,1),(1,0), \ldots,(0,1),(2,0),(0,3),(3,0), \ldots,(0,3),(4,0)} \\
\ldots,(0, n-2),(n-2,0) \ldots,(0, n-2),(n-1,0)]
\end{array}
$$

as the staircase array.
(2) Proved that when n is an odd prime, $v_{0}=(0,0)$ and \vec{a} is the staircase array, $P=P\left(v_{0}, \vec{a}\right)$ represents an $n(n-1)$-path in $K_{n} \square K_{n}$.
(3) Moreover, proved that P contains exactly one edge from each edge orbit.
(9) G is semiregular on $E\left(K_{n} \square K_{n}\right)$, therefore P^{G} is a G-transitive $n(n-1)$-path decomposition of $K_{n} \square K_{n}$.

- We were mainly focusing on the group $G=\langle c\rangle$ where $c(a, b)=(a+1, b)$ for all $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. In this case, we need n to be odd to maintain the semiregular action on the edges.
- We also found L-transitive $n(n-1)$-path decompositions of $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ when $n=2,3,4$, for $L=\left\langle c^{\prime}\right\rangle$ where $c^{\prime}(a, b)=(a+1, b+1)$ for all $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

For example, for $n=4$, we take $H=P((0,0), \vec{a})$ where

$$
\begin{aligned}
\vec{a}= & {[(0,1),(0,1),(0,1),(1,0),(1,0),(1,0),} \\
& (0,2),(2,0),(0,3),(2,0),(0,2),(3,0)]
\end{aligned}
$$

and decomposition H^{L}.

- Another interesting question would be considering $K_{n} \square K_{m}$ for distinct n and m (rectangular grid), and various possible subgraphs, not just a path.

