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Continuous-time quantum walk

” ... quantum walk can be regarded as a universal
computational primitive, with any desired quantum
computation encoded entirely in some underlying
graph.” Andrew Childs arXiv:0806.1972
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Continuous-time quantum walk

” ... quantum walk can be regarded as a universal
computational primitive, with any desired quantum
computation encoded entirely in some underlying
graph.” Andrew Childs arXiv:0806.1972

Continuous-time quantum walk

Transition matrix

U(t) = exp(itA)

= I + itA− 1
2! t

2A2 − i
3! t

3A3 + · · ·
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Example

U(t)a,b for t ∈ [0, 100].
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U(t)a,b for t ∈ [0, 100].500].
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Grover’s search is equivalent to
running a quantum walk on KN

with a marked vertex, with the
Laplacian matrix, and doing a
measurement after
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More context: quantum search

Krystal Guo · Algebraic graph theory and quantum walks8

Problem: given a “marked” value, search N locations to
find the location whose content is the given value.

Classically, one cannot do better than checking O(N)
locations.

Grover’s landmark result is that there is a quantum
algorithm which can do it in O(

√
N) queries.

γ

Spatial quantum search is when we
run the analoguous search on a
marked graph. It is not known for
which graphs, spatial search has a
quadratic speedup.



 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

M(t) = U(t) ◦ Ū(t) =

t = 0
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 0.939105 0.059939 0.000956
0.059939 0.880122 0.059939
0.000956 0.059939 0.939105



Time incrementing by 0.25.
t = 0
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 0.774615 0.211014 0.014371
0.211014 0.577972 0.211014
0.014371 0.211014 0.774615



Time incrementing by 0.25.t = 0
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t = 0

Perfect state transfer:

start

time τ
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Perfect state transfer: paths

Perfect state transfer from a to b:

there exists a time τ , such that probability of
measuring at b, having started at a, is 100%.
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Perfect state transfer: paths

Theorem (Godsil 2012)

The only paths which admit perfect state
transfer are P2 and P3.

Pretty good state transfer from a to b:

for every ε > 0, there exists τ such that

Perfect state transfer from a to b:

there exists a time τ , such that probability of
measuring at b, having started at a, is 100%.

there exists a time τ , such that probability of
measuring at b, having started at a, is at least
100− ε%.
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Pretty good state transfer

Theorem (Godsil, Kirkland, Severini, and Smith 2012)

Pn has pretty good state transfer
if and only if n+ 1 is a prime, twice a prime or a
power of 2.

Krystal Guo · Algebraic graph theory and quantum walks11



Pretty good state transfer

Theorem (Godsil, Kirkland, Severini, and Smith 2012)

Pn has pretty good state transfer
if and only if n+ 1 is a prime, twice a prime or a
power of 2.

between the ends

Krystal Guo · Algebraic graph theory and quantum walks11



Pretty good state transfer

Theorem (Godsil, Kirkland, Severini, and Smith 2012)

Pn has pretty good state transfer
if and only if n+ 1 is a prime, twice a prime or a
power of 2.

between the ends

Theorem (Coutinho, Guo and van Bommel2 2017 )

Pn has pretty good state transfer
if and only if n+ 1 = 2rp where p is a prime.

between internal vxs
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α α

Conjecture (Casaccino, Lloyd, Mancini, and Severini ‘09)

For any n, one can find α so that there is perfect
state transfer from to in Pn.
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α α

Conjecture (Casaccino, Lloyd, Mancini, and Severini ‘09)

For any n, one can find α so that there is perfect
state transfer from to

Theorem (Kempton, Lippner and Yau 2016)

This is not possible for any n > 3.

in Pn.

Theorem (Kempton, Lippner and Yau 2017)

For any n, one can find α so that there is pretty
good state transfer from to in Pn.

Krystal Guo · Algebraic graph theory and quantum walks12



Perfect state transfer in strongly regular graphs

α

α

β (α, β)-perturbation
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Theorem (Godsil, Guo, Kempton and Lippner 2019)

For any strongly regular graph coming from an
orthogonal array, there exists α and β such that
the (α, β)-perturbation admits perfect state
transfer.
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Theorem (Godsil, Guo, Kempton and Lippner 2019)

For any strongly regular graph, there exists α and
β such that the (α, β)-perturbation admits pretty
good state transfer.

In fact, the ”good” values of α, β are dense in the
reals.

Theorem (Godsil, Guo, Kempton and Lippner 2019)

For any strongly regular graph coming from an
orthogonal array, there exists α and β such that
the (α, β)-perturbation admits perfect state
transfer.
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Discrete-time Quantum Walks
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We look at some unitary transition matrix U and,
given a starting state |ψ〉, we consider
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Graph embeddings

. . .

Intuitively, we draw graphs on (orientable) surfaces such
that the edges do not cross and“uses” the handles.

This divides the surface in to regions called faces, such that
each edge is on two faces.

f1 f2

M is the arc-face incidence matrix
and we take P = MMT .

First considered by Zhan in 2020,
generalizing various walks on the
toroidal grid.
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State transfer

Perfect state transfer

UτN |u〉 = N |v〉.

Define Bt = NTUTN .
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State transfer

Perfect state transfer

UτN |u〉 = N |v〉.

Define Bt = NTUTN .

perfect state transfer ⇔ Bt(u, v) = 1.

Theorem (Guo & Schmeits 2022+)

For any two reflection walk, Bt = Tt(B1), where
Tt is the tth Chebyshev polynomial of the first
kind.
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One advantage of looking at a specific model of
2-reflection walk is that we can compute some examples.

In particular, we computed all regular and chiral
orientable maps in Marston Conder’s census.

Any orientably-regular map which admits perfect state
transfer must have U t = I for some t.

Only the values s = 1, 2, 6, 12 appeared in
these computations.

Conjecture

Let X be an orientably-regular map, and let U be its
transition matrix. If s > 0 is such that Us = I and
Ur 6= I for all r < s, then s ∈ {1, 2, 6, 12}.
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Lemma (Guo & Schmeits 2022+)

Let X be a map for which an associated matrix has
rational eigenvalues. Assume that Uτ = I for some
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Lemma (Guo & Schmeits 2022+)

Let X be a map for which an associated matrix has
rational eigenvalues. Assume that Uτ = I for some
τ > 1 and Us 6= I for all s < τ , then τ ∈ {2, 3, 4, 6, 12}.

maps integer U = I U2 = I U6 = I U12 = I
eigenvalues

regular 22320 19226 500 9722 1439 550
chiral 4516 1884 0 314 105 12

Open problem

What are some topological properties (genus, etc.).
which affect the quantum walk?



Extensions of cospectrality
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Cospectral things

Cospectral graphs: graphs cospectral with respect
to the adjacency matrix
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Cospectral vertices

Two vertices u, v in a graph X are cospectral vertices if

X \ u and X \ v are cospectral

φ(X \ u) = φ(X \ v)⇔

For any graph Y and a vertex y, the following gives
the generating function for the closed walks at y,
weighted by length: φ(Y \y)

φ(Y )
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Cospectral vertices

Two vertices u, v in a graph X are cospectral vertices if

X \ u and X \ v are cospectral

φ(X \ u) = φ(X \ v)⇔

For any graph Y and a vertex y, the following gives
the generating function for the closed walks at y,
weighted by length: φ(Y \y)

φ(Y )

But this is also given by the (y, y) entry of A(Y )k.
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Cospectral vertices

Two vertices u, v in a graph X are cospectral vertices if
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(A(X)k)u,u = (A(X)k)v,v for all k ≥ 0⇔
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Cospectral vertices

Two vertices u, v in a graph X are cospectral vertices if

X \ u and X \ v are cospectral

φ(X \ u) = φ(X \ v)⇔

(A(X)k)u,u = (A(X)k)v,v for all k ≥ 0⇔

(Er)u,u = (Er)v,v for r = 0, . . . , d,

where A(X) =
∑d
r=0 θrEr is the spectral

decomposition

⇔
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Strongly cospectral vertices

Suppose A(X) =
∑d
r=0 θrEr is the spectral

decomposition
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Strongly cospectral vertices

Vertices u, v in a graph X are cospectral vertices if
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r=0 θrEr is the spectral

decomposition
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Strongly cospectral vertices

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Vertices u, v in a graph X are strongly cospectral vertices if

Ereu = ±Erev for r = 0, . . . , d.

|vu| = |vv| for any eigenvector v⇔

Suppose B =
∑d
r=0 θrEr has rows and columns indexed

by V (X).
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Strongly cospectral vertices

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

|vu| = |vv| for any eigenvector v⇔

Suppose B =
∑d
r=0 θrEr has rows and columns indexed

by V (X).

Vertices u, v in a graph X are strongly cospectral vertices
w.r.t. B if
Ereu = ±Erev for r = 0, . . . , d.
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Non-examples

Complete graph Kn
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Non-examples

Complete graph Kn

Every pair of vertices is cospectral.

No pair is strongly cospectral.

. . .

Star graph K1,n

No pair is strongly cospectral.

The Petersen graph
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Non-examples

Complete graph Kn

Every pair of vertices is cospectral.

No pair is strongly cospectral.

. . .

Star graph K1,n

No pair is strongly cospectral.

The Petersen graph

(Any primitive strongly regular graph)

Every pair of vertices is cospectral.

No pair is strongly cospectral.
Krystal Guo · Algebraic graph theory and quantum walks25
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Examples

u, v cospectral and X has simple
eigenvalues ⇒ u, v strongly
cospectral
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Examples

u, v cospectral and X has simple
eigenvalues ⇒ u, v strongly
cospectral

Antipodal vertices in the hypercube
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Examples

u, v cospectral and X has simple
eigenvalues ⇒ u, v strongly
cospectral

Theorem
Suppose B belongs to an association scheme. The following are
equivalent.

(1) there exists x and y strongly cospectral mates w.r.t. B;

(2) there exists j such that Aj is a permutation matrix of order
two with no fixed points; and

(3) every x ∈ V has a strongly cospectral mate with respect to
B.
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Cospectral vertices

Let B be any matrix indexed by the vertices of the
graph and let B =

∑
θ θEθ.
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Cospectral vertices

Vertices u, v are strongly cospectral with respect to B
if Eθeu = ±Eθev for every θ.

Let B be any matrix indexed by the vertices of the
graph and let B =

∑
θ θEθ.
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Cospectral vertices

Vertices u, v are strongly cospectral with respect to B
if Eθeu = ±Eθev for every θ.

Theorem (Godsil 2012)

If the continuous-time quantum walk on G admits
perfect state transfer from u to v then u, v are
strongly cospectral.

Let B be any matrix indexed by the vertices of the
graph and let B =

∑
θ θEθ.
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Cospectral vertices

Vertices u, v are strongly cospectral with respect to B
if Eθeu = ±Eθev for every θ.

Let B be any matrix indexed by the vertices of the
graph and let B =

∑
θ θEθ.

Theorem (Guo & Schmeits 2022+)

If the vertex face quantum walk on G admits perfect
state transfer from u to v at time τ then u, v are
strongly cospectral with respect Bd for all d divisors
of τ . In particular, they are strongly cospectral w.r.t.
B1.

Krystal Guo · Algebraic graph theory and quantum walks27



Symmetries of Graphs(Orthogonal)
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Orthogonal symmetries

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.
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∑d
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.

Qeu = Qev,
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.

Qeu = Qev, Q2 = I,
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.

Qeu = Qev, Q2 = I, Q is a polynomial in A.
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.

Qeu = Qev, Q2 = I, Q is a polynomial in A.

Since AQ = QA, we can call Q an orthogonal symmetry
of the graph.
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Orthogonal symmetries

Vertices u, v in a graph X are cospectral vertices if

(Er)u,u = (Er)v,v for r = 0, . . . , d.

Let X be a graph with adjacency matrix A =
∑d
r=0 θrEr.

Let Q =
∑
r αrEr where αr = 1 when u, v agree and −1

otherwise.

Qeu = Qev, Q2 = I, Q is a polynomial in A.

Since AQ = QA, we can call Q an orthogonal symmetry
of the graph.

Godsil & Smith 2012
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Three strongly cospectral vertices

In all the examples listed so far, the strongly cospectral
vertices come in pairs.
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Three strongly cospectral vertices

In all the examples listed so far, the strongly cospectral
vertices come in pairs.

There exists graphs with exactly 3 pairwise strongly
cospectral vertices
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Chan, KG, Zhan 2023++
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Three strongly cospectral vertices

In all the examples listed so far, the strongly cospectral
vertices come in pairs.

There exists graphs with exactly 3 pairwise strongly
cospectral vertices

u

v w

Quw

Qvw

x

Quv

QuvQuw

Chan, KG, Zhan 2023++

Quw

Quw

This vector x is
an example of a
phantom mate.
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Summary

One can study quantum walks using linear algebraic
graph theory and prove properties about the walk
using algebraic properties of the graph.
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Summary

One can study quantum walks using linear algebraic
graph theory and prove properties about the walk
using algebraic properties of the graph.

In the process of doing this, various new
(completely classical) graph properties arise and
provide interesting combinatorial problems.
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Thanks!
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