Perfect codes in Cayley graphs on \mathbb{Z}_{p}^{2} and $\mathbb{Z}_{p^{k}}$

Yusuf Hafidh
University of Melbourne

Joint work with Sanming Zhou and Binzhou Xia
$45^{\text {th }}$ Australasian Combinatorics Conference
University of Western Australia
13 December 2023

Perfect code

Ball

Let u be a vertex of a connected graph Γ and r be a positive integer. The ball with radius r centered at u is denoted by $B_{r}(u)$. This is the set of vertices with distance at most r to u, i.e. $B_{r}(u)=\{v: d(v, u) \leq r\}$.

Perfect r-code

A set of vertices C of Γ, is called a perfect r-code in Γ if $\left\{B_{r}(u): u \in C\right\}$ is a partition of $V(\Gamma)$.

Perfect 2-code in grid graph

Figure 1. Grid graph

Perfect 2-code in grid graph

Figure 1. Grid graph
Perfect 2-code C

Perfect 2-code in grid graph

Figure 1. Grid graph
Perfect 2-code C
Balls with radius 2 centered at vertices in C

Relations

- A perfect r-code is an r-error correcting code in coding theory.

Relations

- A perfect r-code is an r-error correcting code in coding theory. (Also an error detecting code)

Relations

- A perfect r-code is an r-error correcting code in coding theory. (Also an error detecting code)
- Coding theory : perfect r-code in q-ary alphabet of length n.
- Graph theory: perfect r-code in the Hamming graph $H(n, q)=\underbrace{K_{q} \square \cdots \square K_{q}}_{n \text { times }}$.

Relations

- A perfect r-code is an r-error correcting code in coding theory. (Also an error detecting code)
- Coding theory : perfect r-code in q-ary alphabet of length n.
- Graph theory : perfect r-code in the Hamming graph

$$
H(n, q)=\underbrace{K_{q} \square \cdots \square K_{q}}_{n \text { times }} .
$$

- A perfect 1-code is a dominating set in graph theory.

Cayley graph

Cayley graph

Let G be a group and $S \subseteq G \backslash\{0\}$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is the graph with vertex set G and edges from $x \in G$ to $x+s, s \in S$.

Cayley graph

Cayley graph

Let G be a group and $S \subseteq G \backslash\{0\}$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is the graph with vertex set G and edges from $x \in G$ to $x+s, s \in S$.
(1) If S is closed under taking inverse elements (i.e. $S=-S$), then Γ is undirected.
(2) If S generates G, then Γ is connected.

Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{17},\{1, \pm 5\}\right)$

Figure 3. Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{17},\{1, \pm 5\}\right)$

Motivation and Problem 1

- q-ary alphabet of length n using Hamming distance is represented as $H(q, n)=\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ where $S=\mathbb{Z}_{q} \backslash\{0\}$.

Motivation and Problem 1

- q-ary alphabet of length n using Hamming distance is represented as $H(q, n)=\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ where $S=\mathbb{Z}_{q} \backslash\{0\}$.
- q-ary alphabet of length n using Lee distance is represented as $\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ where $S=\{ \pm 1\}$.

Motivation and Problem 1

- q-ary alphabet of length n using Hamming distance is represented as $H(q, n)=\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ where $S=\mathbb{Z}_{q} \backslash\{0\}$.
- q-ary alphabet of length n using Lee distance is represented as $\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ where $S=\{ \pm 1\}$.
- Problem 1: For which S does the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{q}, S\right)^{n}$ has a perfect code?

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$

Theorem 1

Let p be an odd prime and S a non-empty subset of \mathbb{Z}_{p}. Then $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect 1-code if and only if $|S|=\frac{p-1}{2}$ and there is an $a \in \mathbb{Z}_{p}^{*}$ such that $a S \cap(-S)=\emptyset$.

Moreover, the perfect 1-codes are $\left\{(n, a n+b) \mid n \in \mathbb{Z}_{p}\right\}$ for any $b \in \mathbb{Z}_{p}$.

Perfect 1-codes in Cay $\left(\mathbb{Z}_{p}, S\right)^{2}$

Theorem 1

Let p be an odd prime and S a non-empty subset of \mathbb{Z}_{p}. Then $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect 1-code if and only if $|S|=\frac{p-1}{2}$ and there is an $a \in \mathbb{Z}_{p}^{*}$ such that $a S \cap(-S)=\emptyset$.

Moreover, the perfect 1-codes are $\left\{(n, a n+b) \mid n \in \mathbb{Z}_{p}\right\}$ for any $b \in \mathbb{Z}_{p}$.

Note: Condition could be $\exists a \in \mathbb{Z}_{p}^{*} \ni a S \cap S=\emptyset$

Proof of Theorem 1

- If $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect code C then

$$
\mathbb{Z}_{p}^{2}=C \oplus\{(0,0),(0, s),(s, 0) \mid s \in S\}
$$

Proof of Theorem 1

- If $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect code C then

$$
\mathbb{Z}_{p}^{2}=C \oplus\{(0,0),(0, s),(s, 0) \mid s \in S\}
$$

- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_{p}^{2} of order p.

Proof of Theorem 1

- If $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect code C then

$$
\mathbb{Z}_{p}^{2}=C \oplus\{(0,0),(0, s),(s, 0) \mid s \in S\}
$$

- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_{p}^{2} of order p.
- There is an $a \in \mathbb{Z}_{p}^{*}$ such that $C=\left\{(n, a n+b) \mid n \in \mathbb{Z}_{p}\right\}$, $b \in \mathbb{Z}_{p}$.

Proof of Theorem 1

- If $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}$ has a perfect code C then

$$
\mathbb{Z}_{p}^{2}=C \oplus\{(0,0),(0, s),(s, 0) \mid s \in S\}
$$

- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_{p}^{2} of order p.
- There is an $a \in \mathbb{Z}_{p}^{*}$ such that $C=\left\{(n, a n+b) \mid n \in \mathbb{Z}_{p}\right\}$, $b \in \mathbb{Z}_{p}$.
- Establish that $a s_{1} \neq-s_{2}$ for $s_{1}, s_{2} \in S$.

Proof of Theorem 1

$$
\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2}
$$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2}
$$

Consider $(0,0) \in C$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2}
$$

Consider $(0,0) \in C$ centered at $(0,0)$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\begin{gathered}
\Gamma=C a y\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2} \\
\text { Consider }(0,0) \in C \\
\quad \text { centered at }(0,0) \\
C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}
\end{gathered}
$$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\begin{gathered}
\Gamma=C a y\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2} \\
\text { Consider }(0,0) \in C \\
\quad \text { centered at }(0,0) \\
C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}
\end{gathered}
$$

For $\left(s_{1}, a s_{1}\right) \in C, s_{1} \in S$,

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\begin{gathered}
\Gamma=C a y\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2} \\
\text { Consider }(0,0) \in C \\
\quad \text { centered at }(0,0) \\
C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}
\end{gathered}
$$

For $\left(s_{1}, a s_{1}\right) \in C, s_{1} \in S$, $a s_{1}+s_{2} \neq 0$, for all $s_{2} \in S$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$$
\begin{gathered}
\Gamma=C a y\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2} \\
\text { Consider }(0,0) \in C \\
\quad \text { centered at }(0,0) \\
C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}
\end{gathered}
$$

For $\left(s_{1}, a s_{1}\right) \in C, s_{1} \in S$, $a s_{1}+s_{2} \neq 0$, for all $s_{2} \in S$

$$
a S \cap(-S) \neq 0
$$

$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

Proof of Theorem 1

$\Gamma=C a y\left(\mathbb{Z}_{7},\{1,4,5\}\right)^{2}$	$(0,6)$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$
Consider $(0,0) \in C$	$(0,5)$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	6,5)
centered at $(0,0)$	$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}$	$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$		$(6,3)$
For $\left(s_{1}, a s_{1}\right) \in C, s_{1} \in$	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$a S \cap(-S) \neq 0$	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$	$(5,0)$	$(6,0)$

If $a S \cap(-S) \neq \emptyset$, then $C=\left\{(n, a n) \mid n \in \mathbb{Z}_{p}\right\}$ is a perfect code.

Examples

(1) $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\} ; a=1$.

Examples

(1) $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\} ; a=1$.
(2) $S=\left\{x_{i} \mid x_{i} \in\{ \pm i\}, i=1, \ldots, \frac{p-1}{2}\right\} ; a=1$.

Examples

(1) $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\} ; a=1$.
(2) $S=\left\{x_{i} \mid x_{i} \in\{ \pm i\}, i=1, \ldots, \frac{p-1}{2}\right\} ; a=1$.
(3) S is the set of quadratic residues of $\mathbb{Z}_{p} ; a$ is any quadratic residue for $p \equiv 3(\bmod 4)$ and a is any non-quadratic residue for $p \equiv 1(\bmod 4)$ (Paley graph).

Examples

(1) $S=\left\{1,2, \ldots, \frac{p-1}{2}\right\} ; a=1$.
(2) $S=\left\{x_{i} \mid x_{i} \in\{ \pm i\}, i=1, \ldots, \frac{p-1}{2}\right\} ; a=1$.

- S is the set of quadratic residues of $\mathbb{Z}_{p} ; a$ is any quadratic residue for $p \equiv 3(\bmod 4)$ and a is any non-quadratic residue for $p \equiv 1(\bmod 4)($ Paley graph $)$.
- S is the set of non-quadratic residues of \mathbb{Z}_{p}; a is any quadratic residue for $p \equiv 3(\bmod 4)$ and a is any non-quadratic residue for $p \equiv 1(\bmod 4)$.

When $q \equiv 1(\bmod 4)$, examples 3 and 4 is an undirected graph.

A generalization

> As $\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)^{2}=\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S_{2}\right)$ where $S_{2}=\{(0, s),(s, 0) \mid s \in S\}$,
for which S does $\operatorname{Cay}\left(\mathbb{Z}_{q}^{2}, S\right)$ has a perfect 1-code?

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S\right)$

Theorem 2

Let p be a prime. If Γ is not a complete graph, then
$\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S\right)$ has a perfect 1 -code if and only if $|S|=p-1$ and S satisfy:
(1) $\left\{s_{1} \mid\left(s_{1}, s_{2}\right) \in S\right\}=\mathbb{Z}_{p}^{*}$, or
(2) there is an $a \in \mathbb{Z}_{p}$ such that $\left\{a s_{1}+s_{2} \mid\left(s_{1}, s_{2}\right) \in S\right\}=\mathbb{Z}_{p}^{*}$.

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S\right)$

Theorem 2

Let p be a prime. If Γ is not a complete graph, then
$\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S\right)$ has a perfect 1 -code if and only if $|S|=p-1$ and S satisfy:
(1) $\left\{s_{1} \mid\left(s_{1}, s_{2}\right) \in S\right\}=\mathbb{Z}_{p}^{*}$, or
(2) there is an $a \in \mathbb{Z}_{p}$ such that $\left\{a s_{1}+s_{2} \mid\left(s_{1}, s_{2}\right) \in S\right\}=\mathbb{Z}_{p}^{*}$.

Theorem 3

Let p be a prime. If Γ is not a complete graph, then $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}^{2}, S\right)$ has a perfect 1 -code if and only if $|S|=p-1$ and there are $a, b \in \mathbb{Z}_{p}$ such that $\left\{a s_{1}+b s_{2} \mid\left(s_{1}, s_{2}\right) \in S\right\}=\mathbb{Z}_{p}^{*}$.

Motivation and problem 2

- Deng (2014) :
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ that has a perfect 1-code of prime size.
- Feng, Huang, Zhou (2017):
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of degree prime minus one that has a perfect 1-code.
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of $p^{k}-1$ degree that has a perfect 1 -code where p^{k} is relatively prime to $\frac{n}{p^{k}}$.
- Deng, Sun, Liu, Wang (2017): Perfect 1 -codes on
- $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of degree $p q-1$ and $p^{k}-1$ for primes p, q, and $|S|+1$ is relatively prime to $\frac{n}{|S|+1}$, and
- $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ where $n=p^{k} q, p^{2} q^{2}, p q r, p^{2} q r, p q r s$, for different primes p, q, r, s, and $|S|+1$ is relatively prime to $\frac{n}{|S|+1}$.

Motivation and problem 2

- Deng (2014) :
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ that has a perfect 1-code of prime size.
- Feng, Huang, Zhou (2017):
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of degree prime minus one that has a perfect 1-code.
- Characterization of $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of $p^{k}-1$ degree that has a perfect 1 -code where p^{k} is relatively prime to $\frac{n}{p^{k}}$.
- Deng, Sun, Liu, Wang (2017): Perfect 1-codes on
- $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of degree $p q-1$ and $p^{k}-1$ for primes p, q, and $|S|+1$ is relatively prime to $\frac{n}{|S|+1}$, and
- $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ where $n=p^{k} q, p^{2} q^{2}, p q r, p^{2} q r, p q r s$, for different primes p, q, r, s, and $|S|+1$ is relatively prime to $\frac{n}{|S|+1}$.
- Problem 2: What if $|S|+1$ is not relatively prime to $\frac{n}{|S|+1}$?

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p^{k}}, S\right)$

Theorem 4

Let p be an odd prime and $\Gamma=C a y\left(\mathbb{Z}_{p^{k}}, S\right)$ a connected non trivial graph, then Γ admits a perfect 1 -code if and only if there are integers

$$
0=t_{0}<t_{1}<\cdots<t_{n}<t_{n+1}=k
$$

and $1 \leq l_{a} \leq t_{a+1}-t_{a}$ for $a=0, \ldots, n$ such that

$$
S_{0}=\left\{\sum_{a=0}^{n}\left(i_{a} p^{s_{a}}+\alpha_{i_{0}, \ldots, i_{a}} p^{s_{a}+l_{a}}\right) \mid i_{a}=0, \ldots, p^{l_{a}}-1\right\}
$$

where $\alpha_{i_{0}, \ldots, i_{a}} \in \mathbb{Z}_{p^{k}}$.
Note : $S_{0}=S \cup\{0\}$.

Proof idea

- C is a perfect code of $\operatorname{Cay}(G, S) \Longleftrightarrow G=C \oplus S_{0}$.

Proof idea

- C is a perfect code of $\operatorname{Cay}(G, S) \Longleftrightarrow G=C \oplus S_{0}$.
- Lemma 1 [9]:
- For a finite abelian group G and $A \subseteq G, L_{A}$, the set of elements $g \in G$ such that $g+A=A$ is a subgroup of G (called the subgroups of periods of A), and $A=L_{A} \oplus B$ for some set B.

Proof idea

- C is a perfect code of $\operatorname{Cay}(G, S) \Longleftrightarrow G=C \oplus S_{0}$.
- Lemma 1 [9] :
- For a finite abelian group G and $A \subseteq G, L_{A}$, the set of elements $g \in G$ such that $g+A=A$ is a subgroup of G (called the subgroups of periods of A), and $A=L_{A} \oplus B$ for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^{k}}=A \oplus B$, then one of A and B is periodic.

Proof idea

- C is a perfect code of $\operatorname{Cay}(G, S) \Longleftrightarrow G=C \oplus S_{0}$.
- Lemma 1 [9] :
- For a finite abelian group G and $A \subseteq G, L_{A}$, the set of elements $g \in G$ such that $g+A=A$ is a subgroup of G (called the subgroups of periods of A), and $A=L_{A} \oplus B$ for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^{k}}=A \oplus B$, then one of A and B is periodic.
- Lemma 2 [9]:
- Let $G=A \oplus B$ where A is periodic $\left(A=L_{A} \oplus D\right)$, then

$$
G / L_{A}=\left(D+L_{A}\right) / L_{A} \oplus\left(B+L_{A}\right) / L_{A}
$$

where $\left(H+L_{A}\right) / L_{A}=\left\{h+L_{A}: h \in H\right\}$.

Proof idea

- C is a perfect code of $\operatorname{Cay}(G, S) \Longleftrightarrow G=C \oplus S_{0}$.
- Lemma 1 [9] :
- For a finite abelian group G and $A \subseteq G, L_{A}$, the set of elements $g \in G$ such that $g+A=A$ is a subgroup of G (called the subgroups of periods of A), and $A=L_{A} \oplus B$ for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^{k}}=A \oplus B$, then one of A and B is periodic.
- Lemma 2 [9]:
- Let $G=A \oplus B$ where A is periodic $\left(A=L_{A} \oplus D\right)$, then

$$
G / L_{A}=\left(D+L_{A}\right) / L_{A} \oplus\left(B+L_{A}\right) / L_{A}
$$

where $\left(H+L_{A}\right) / L_{A}=\left\{h+L_{A}: h \in H\right\}$.

- Since $\mathbb{Z}_{p^{k}} / \mathbb{Z}_{p^{l}} \cong \mathbb{Z}_{p^{k-l}}$, we can use induction on k.

Good abelian group

- For an abelian group $G, G=A \oplus B$ is a factorization of G, and A and B are factors of G.
- A group G is said to be good if in every factorization of G, there is a periodic factor.
- All finite good abelian groups are precisely the following groups and their subgroups:
(1) $\mathbb{Z}_{p} \times \mathbb{Z}_{p}[5]$
(2) $\mathbb{Z}_{p} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}[7]$
(8) $\mathbb{Z}_{2^{\lambda}} \times \mathbb{Z}_{2}[8]$
(3) $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}[7]$
(9) $\mathbb{Z}_{p^{\lambda}} \times \mathbb{Z}_{q}[1]$
(9) $\mathbb{Z}_{p} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ [7]
(10) $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q^{2}}$ [6]
(5) $\mathbb{Z}_{p^{3}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}[7]$
(1) $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r}[6]$
($\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ [7]
(12) $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ [6]
(1) $\mathbb{Z}_{p} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}[7]$
(33) $\mathbb{Z}_{9} \times \mathbb{Z}_{3}[8]$
(44) $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ [8]
where p, q, r, and s are different primes.

Perfect 1-codes in Cayley graphs with degree prime minus one

G	S_{0}	Requirement on S to be have a perfect 1-code	Perfect 1-code C
$\mathbb{Z}_{p} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$\left\|S_{0}\right\|=3$	no requirement	$C=\langle(a, b, c)\rangle+(x, y, z)$ where $\operatorname{ord}((a, b, c))=3 p, s_{1}, s_{2}, s_{1}-$ $s_{2} \notin\langle(a, b, c)\rangle$, and (x, y, z) any el- ement of G
	$\left\|S_{0}\right\|=p$	$\left\{a \mid(a, b, c) \in S_{0}\right\}=\mathbb{Z}_{p}$	$C=\{x\} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ for some $x \in \mathbb{Z}_{p}$
$\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2}^{2}$	$\left\|S_{0}\right\|=p$	$\left\{a \mid(a, b, c, d) \in S_{0}\right\}=$	$\begin{aligned} & C=\{x\} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { for some } \\ & x \in \mathbb{Z}_{p} \end{aligned}$
$\mathbb{Z}_{p} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$	$\left\|S_{0}\right\|=p$	$\left\{a \mid(a, b, c) \in S_{0}\right\}=\mathbb{Z}_{p}$	$C=\{x\} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ for some $x \in \mathbb{Z}_{p}$
$\mathbb{Z}_{p^{3}} \times \mathbb{Z}_{2}^{2}$	$\left\|S_{0}\right\|=p$	$\begin{aligned} & \{a(\bmod p) \mid(a, b, c) \in \\ & \left.S_{0}\right\}=\mathbb{Z}_{p} \end{aligned}$	$\begin{aligned} & C=\langle(p, 0,0),(0,1,0),(0,0,1)\rangle+ \\ & (x, y, z) \text { for some }(x, y, z) \text { in } G \end{aligned}$
$\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{2}^{3}$	$\left\|S_{0}\right\|=p$	$\begin{aligned} & \{a(\bmod p) \mid(a, b, c, d) \in \\ & \left.S_{0}\right\}=\mathbb{Z}_{p} \end{aligned}$	$C \quad\langle\quad\langle(p, 0,0,0),(0,1,0,0)$, $(0,0,1,0),(0,0,0,1)\rangle$ (w, x, y, z) for some $\quad(w, x, y, z)$ in G
$\mathbb{Z}_{p} \times \mathbb{Z}_{2}^{4}$	$\left\|S_{0}\right\|=p$	$\begin{aligned} & \left\{a \mid(a, b, c, d, e) \in S_{0}\right\}= \\ & \mathbb{Z}_{p} \end{aligned}$	$\begin{aligned} & C=\{x\} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { for } \\ & \text { some } x \in \mathbb{Z}_{p} \end{aligned}$

Perfect codes in $\operatorname{Cay}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, S\right)$

G	S_{0}	Requirement on S to be have a perfect 1-code	Perfect 1-code C
$\begin{aligned} & \text { N్ } \\ & \times \\ & \mathfrak{N} \\ & \times \\ & \times{ }^{2} \end{aligned}$	$\left\|S_{0}\right\|=3$	Γ admits a perfect code for any $S=$ $\left\{s_{1}, s_{2}\right\}$	$\begin{aligned} & C=\langle(a, b, c)\rangle+(x, y, z) \\ & \text { where ord }((a, b, c))=3 p, \\ & s_{1}, s_{2}, s_{1}-s_{2} \notin\langle(a, b, c)\rangle, \\ & \text { and }(x, y, z) \text { any element of } G \end{aligned}$
	$\left\|S_{0}\right\|=p$	$\left\{a \mid(a, b, c) \in S_{0}\right\}=\mathbb{Z}_{p}$	$\begin{aligned} & C=\{x\} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \text { for some } \\ & x \in \mathbb{Z}_{p} \end{aligned}$
	$\left\|S_{0}\right\|=9,$ S_{0} non-periodic	$\begin{aligned} & \left\{(b, c) \mid(a, b, c) \in S_{0}\right\}=\mathbb{Z}_{3} \times \\ & \mathbb{Z}_{3} \end{aligned}$	$C=\left\{(x, y, z) \mid x \in \mathbb{Z}_{p}\right\} \text { for }$ $\text { some } y, z \in \mathbb{Z}_{3}$
	$\left\|S_{0}\right\|=9,$ S_{0} periodic	$\begin{aligned} & S_{0}=L_{S_{0}} \oplus D,\{(0, b, c)+ \\ & L_{S_{0}} \mid(a, b, c)+L_{S_{0}} \in(D+ \\ & \left.\left.L_{S_{0}}\right) / L_{S_{0}}\right\} \cong \mathbb{Z}_{3} \text { in } G / L_{S_{0}} \end{aligned}$	$\begin{aligned} & C=\left\{(a, y, z)+l_{a} \mid a \in\right. \\ & \left.\mathbb{Z}_{p}\right\} \text { for any } y, z \in \mathbb{Z}_{3} \text { and } \\ & l_{a} \in L_{S_{0}} \end{aligned}$
	$\left\|S_{0}\right\|=3 p$, S_{0} non-periodic	$\begin{aligned} & \text { There is }(\alpha, \beta) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\ & \text { such that for every } \in \in \mathbb{Z}_{p},(1) \\ & \left\|\left\{(x, y, z) \in S_{0} \mid x=a\right\}\right\|= \\ & 3 \text { and }(2)(\{(b, c) \mid(a, b, c) \in \\ & \left.\left.S_{0}\right\}+\langle(b, c)\rangle\right) /\langle(b, c)\rangle=\left(\mathbb{Z}_{3} \times\right. \\ & \left.\mathbb{Z}_{3}\right) /\langle(0, b, c)\rangle \end{aligned}$	$\begin{aligned} & C=\{(x, y+r \alpha, z+r \beta) \\ & \left.r \in \mathbb{Z}_{3}\right\} \text { for any } x \in \mathbb{Z}_{p} \text { and } \\ & y, z \in \mathbb{Z}_{3} \end{aligned}$
	$\left\|S_{0}\right\|=3 p,$ S_{0} periodic	$S_{0}=L_{S_{0}} \oplus D$, There is a non-zero $(\alpha, \beta) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ such that $(D+\langle(0, \alpha, \beta)\rangle) /\langle(0, \alpha, \beta)\rangle$ is a complete set of residue in $G /\langle(0, \alpha, \beta)\rangle$ modulo $\left(L_{S_{0}}+\right.$ $\langle(0, \alpha, \beta)\rangle) /\langle(0, \alpha, \beta)\rangle$	$\begin{aligned} & C=\left\{a(0, \alpha, \beta)+l_{a} \mid a \in\right. \\ & \left.\mathbb{Z}_{3}\right\} \text { where } l_{a} \in L_{S_{0}} \end{aligned}$

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, S\right)$

G	S_{0}	Requirement on S to be have a perfect 1-code	Perfect 1-code C
$\begin{aligned} & \text { N } \\ & \times \\ & \times \\ & \text { N } \\ & \times \\ & \times \\ & \text { N } \\ & \times \\ & \mathbf{N}^{2} \end{aligned}$	$\left\|S_{0}\right\|=p$	$\left\{a \mid(a, b, c, d) \in S_{0}\right\}=\mathbb{Z}_{p}$	$\begin{aligned} & C=\{x\} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { for } \\ & \text { some } x \in \mathbb{Z}_{p} \end{aligned}$
	$\left\|S_{0}\right\|=p q$, S_{0} periodic	$\begin{aligned} & S_{0}=\left\{\left(a, b, c_{a}, d_{a}\right) \mid a \in\right. \\ & \left.\mathbb{Z}_{p}, b \in \mathbb{Z}_{q}\right\}, c_{a}, d_{a} \in \mathbb{Z}_{2} \end{aligned}$	$\begin{aligned} & C=\left\{\left(0, l_{y, z}, y, z\right)\right. \\ & \left.(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right\}, l_{x, y} \in \\ & L_{S_{0}} \end{aligned}$
	$\left\|S_{0}\right\|=p q$, S_{0} non-periodic, $\left\|L_{\left(S_{0}+L_{C}\right) / L_{C}}\right\|=q$	$\begin{aligned} & S_{0}=\left\{\left(a, b, c_{a}, d_{a}\right)+l_{a, b} \mid a \in\right. \\ & \left.\mathbb{Z}_{p}, b \in \mathbb{Z}_{q}\right\}, c_{a}, d_{a} \in \mathbb{Z}_{2}, l_{a, b} \in \\ & L_{C} \end{aligned}$	$\begin{aligned} & \hline C \quad L_{C} \cup\left(L_{C}+\right. \\ & (w, x, y, z)), \\ & \langle(0,0, \alpha, \beta)\rangle \text { where } L_{C} \\ & = \\ & \langle(\alpha, \beta)\rangle \\ & \langle \end{aligned}$
	$\left\|S_{0}\right\|=p q$, S_{0} non-periodic, $\left\|L_{\left(S_{0}+L_{C}\right) / L_{C}}\right\|=p$	$\begin{aligned} & S_{0}=\left\{\left(a, b, c_{b}, d_{b}\right)+l_{a, b} \mid a \in\right. \\ & \left.\mathbb{Z}_{p}, b \in \mathbb{Z}_{q}\right\}, c_{b}, d_{b} \in \mathbb{Z}_{2}, l_{a, b} \in \\ & L_{C} \end{aligned}$	$\begin{array}{lll} \hline C & L_{C} \underset{C}{\cup} \cup\left(L_{C}\right. & + \\ (w, x, y, z)), & \text { where } L_{C} & = \\ \langle(0,0, \alpha, \beta)\rangle \text { and }(y, z) & \notin \\ \langle(\alpha, \beta)\rangle & & \\ \hline \end{array}$
	$\left\|S_{0}\right\|=2 p$ S_{0} periodic	$\begin{aligned} & S_{0}=L_{S_{0}} \oplus D \text { where }\left\|L_{S_{0}}\right\|=2, \\ & \{a \mid(a, b, c, d) \in D\}=\mathbb{Z}_{p} \end{aligned}$	$\begin{aligned} & C=\left\{(0, b, a w, a v)+l_{a, b}\right. \\ & \left.a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{q}\right\}, l_{a, b} \in \\ & L_{S_{0}} \end{aligned}$
	$\left\|S_{0}\right\|=2 p$, S_{0} non-periodic	$\begin{aligned} & S_{0}= \\ & l_{\alpha, \beta} \mid \alpha \\ & l_{\alpha, \beta} \in L_{C} \end{aligned} \in \stackrel{\{(\alpha, \beta b, \beta c, \beta d)}{\mathbb{Z}_{p}, \beta} \in \underset{\left.\mathbb{Z}_{2}\right\},}{ }$	$\begin{aligned} & \hline C=L_{C} \oplus D, \quad \text { where } \\ & L_{C}=\langle(0,0, \alpha, \beta)\rangle \text { and }\{b \mid \\ & (a, b, c, d) \in D\}=\mathbb{Z}_{q} \\ & \hline \end{aligned}$

Perfect 1-codes in $\operatorname{Cay}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, S\right)$

G	S_{0}	Requirement on S to be have a perfect 1-code	Perfect 1-code C
$\begin{aligned} & \mathfrak{N} \\ & \times \\ & \times \\ & \mathbb{N} \\ & \times \\ & \times \\ & \mathbb{N}^{2} \\ & \times \\ & \mathbb{N}^{2} \end{aligned}$	$\left\|S_{0}\right\|=4,$ S_{0} periodic	$S_{0}=$ $\langle(0,0, y, z)\rangle$ $(\langle(0,0, y, z)\rangle$ $+\quad(a, b, c, d))$ where $a, b \neq 0,(c, d) \notin\langle(y, z)\rangle$ and (y, z) $\neq(0,0)$	$\begin{aligned} & C=\left\{\left(\alpha, \beta, \gamma_{\alpha, \beta}, \delta_{\alpha, \beta}\right)\right. \\ & \left.(\alpha, \beta) \in \mathbb{Z}_{p} \times \mathbb{Z}_{a}\right\} \end{aligned}$
	$\left\|S_{0}\right\|=4,$ S_{0} non-periodic	$\begin{aligned} & S_{0}=\{\alpha(0,0, y, z)+ \\ & \left.\beta(a, b, c, d)+l_{\alpha, \beta} \mid \alpha, \beta \in \mathbb{Z}_{2}\right\} \\ & \text { where } l_{\alpha, \beta} \in L_{C} \end{aligned}$	$C \quad=\quad L_{C} \oplus \quad D$ where $L_{C}=\langle(1,0,0,0)\rangle$ $\{b \mid(a, b, c, d) \in D\}=$ and or $L_{C}=\langle(0,1,0,0)\rangle$ $\{a \mid(a, b, c, d) \in D\}=\mathbb{Z}_{p}$ $\{a \mid$
		$\begin{aligned} & \left\{(c, d) \mid(a, b, c, d) \in S_{0}\right\}= \\ & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \end{aligned}$	$C=\langle(1,1,0,0)\rangle$
	$\left\|S_{0}\right\|=2 p q$	$\begin{aligned} & S_{0}=\langle(1,1,0,0),(0,0, c, d)\rangle \\ & \text { where }(c, d) \notin\langle(y, z)\rangle,(y, z) \neq \\ & (0,0) \end{aligned}$	$C=\{(0,0,0,0),(w, x, y, z)\}$
	$\left\|S_{0}\right\|=4 p$, S_{0} periodic	$\begin{aligned} & S_{0}=\left\{\left(a, b_{a, c, d}, c, d\right)+l_{a, c, d}\right. \\ & \left.a \in \mathbb{Z}_{p}, c, d \in \mathbb{Z}_{2}\right\}, b_{a, c, d} \in \mathbb{Z}_{q}, \\ & l_{a, c, d} \in L_{S_{0}} \end{aligned}$	$\begin{aligned} & C=\left\{(0, b, 0,0)+l_{b} \mid b \in \mathbb{Z}_{q}\right\}, \\ & l_{b} \in L_{S_{0}} \end{aligned}$
	$\left\|S_{0}\right\|=4 p,$ S_{0} non-periodic	$\begin{aligned} & S_{0}=\left\{a, b_{a, c, d}, c, d \mid{ }^{\prime} a \in\right. \\ & \left.\mathbb{Z}_{p}, c, d \in \mathbb{Z}_{2}\right\}, b_{a, c, d} \in \mathbb{Z}_{q} \end{aligned}$	$C=\langle(0,1,0,0)\rangle$

References

[1] N. G. de Bruijn, On the factorisation of cyclic groups, Indag. Math. Kon. Ned, Akad. Wetensch. Amsterdam, 15 (1953), 370-377.
[2] Y.P. Deng, Efficient dominating sets in circulant graphs with domination number prime, Inform. Process. Lett., 114 (2014), 700-702.
[3] Y.P. Deng, Y.Q. Sun, Q. Liu and H.C. Wang, Efficient dominating sets in circulant graphs, Discrete Math., 340(7) (2017), 1503-1507.
[4] R. Feng, H. Huang, and S. Zhou, Perfect codes in circulant graphs, Discrete Math., 340 (2017), 1522-1527.
[5] L. Rédei and Zwei, Liickensatze iiber Polynome in endlichen Primkorpern mit Anwendungen auf die endlichen Abelschen Gruppen und die Gaussischen Summen. Acta Math., 79 (1947), 273-290.
[6] A. D. Sands, On the factorisation of finite abelian groups, Acta Math. Acad. Sci. Hung., g (1957), pp. 65-86.
[7] A. D. Sands, On the factorisation of finite abelian groups, II, Acta Math. Acad. Sci. Hung., 13 (1962), no.1-2, 153-169.
[8] A. D. Sands, The factorization of abelian groups, The Quarterly Journal of Mathematics, 10 (1959), 81-91.
[9] S. Szabó and A.D. Sands, Factoring Groups into Subsets, CRC Press, Taylor and Francic Groun (o)

