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Perfect code

Ball

Let u be a vertex of a connected graph Γ and r be a positive integer.
The ball with radius r centered at u is denoted by Br(u). This is the set
of vertices with distance at most r to u, i.e. Br(u) = {v : d(v, u) ≤ r}.

Perfect r-code

A set of vertices C of Γ, is called a perfect r-code in Γ if
{Br(u) : u ∈ C} is a partition of V (Γ).
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Perfect 2-code in grid graph

Figure 1. Grid graph

Perfect 2-code C

Balls with radius 2 centered at vertices in C
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Relations

A perfect r-code is an r-error correcting code in coding
theory.

(Also an error detecting code)

Coding theory : perfect r-code in q-ary alphabet of length n.

Graph theory : perfect r-code in the Hamming graph
H(n, q) = Kq □ · · ·□Kq︸ ︷︷ ︸

n times

.

A perfect 1-code is a dominating set in graph theory.
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Cayley graph

Cayley graph

Let G be a group and S ⊆ G\{0}. The Cayley graph
Γ = Cay(G,S) is the graph with vertex set G and edges from
x ∈ G to x+ s, s ∈ S.

1 If S is closed under taking inverse elements (i.e. S = −S),
then Γ is undirected.

2 If S generates G, then Γ is connected.
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Cayley graph Cay(Z17, {1,±5})
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Figure 3. Cayley graph Cay(Z17, {1,±5})
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Motivation and Problem 1

q-ary alphabet of length n using Hamming distance is
represented as H(q, n) = Cay(Zq, S)

n where S = Zq\{0}.

q-ary alphabet of length n using Lee distance is represented
as Cay(Zq, S)

n where S = {±1}.

Problem 1: For which S does the Cayley graph Cay(Zq, S)
n

has a perfect code?
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Perfect 1-codes in Cay(Zp, S)
2

Theorem 1

Let p be an odd prime and S a non-empty subset of Zp. Then
Γ = Cay(Zp, S)

2 has a perfect 1-code if and only if |S| = p−1
2 and

there is an a ∈ Z∗
p such that aS ∩ (−S) = ∅.

Moreover, the perfect 1-codes are {(n, an+ b) | n ∈ Zp} for any
b ∈ Zp.

Note: Condition could be ∃a ∈ Z∗
p ∋ aS ∩ S = ∅
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Proof of Theorem 1

If Cay(Zp, S)
2 has a perfect code C then

Z2
p = C ⊕ {(0, 0), (0, s), (s, 0) | s ∈ S}.

Rédei and Zwei (1947) : C is a coset of Z2
p of order p.

There is an a ∈ Z∗
p such that C = {(n, an+ b) | n ∈ Zp},

b ∈ Zp.

Establish that as1 ̸= −s2 for s1, s2 ∈ S.
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Rédei and Zwei (1947) : C is a coset of Z2
p of order p.

There is an a ∈ Z∗
p such that C = {(n, an+ b) | n ∈ Zp},

b ∈ Zp.

Establish that as1 ̸= −s2 for s1, s2 ∈ S.

Yusuf Hafidh Perfect codes in Cayley graphs on Z2
p and Z

pk



Proof of Theorem 1

Γ = Cay(Z7, {1, 4, 5})2

Consider (0, 0) ∈ C

Ball centered at (0, 0)

C = {(n, an) | n ∈ Zp}

For (s1, as1) ∈ C, s1 ∈ S,
as1 + s2 ̸= 0, for all s2 ∈ S

aS ∩ (−S) ̸= 0

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(4, 6)

(5, 0)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

(5, 6)

(6, 0)

(6, 1)

(6, 2)

(6, 3)

(6, 4)

(6, 5)

(6, 6)

If aS ∩ (−S) ̸= ∅, then C = {(n, an) | n ∈ Zp} is a perfect code.
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Examples

1 S =
{
1, 2, . . . , p−1

2

}
; a = 1.

2 S =
{
xi | xi ∈ {±i}, i = 1, . . . , p−1

2

}
; a = 1.

3 S is the set of quadratic residues of Zp; a is any quadratic
residue for p ≡ 3 (mod 4) and a is any non-quadratic residue
for p ≡ 1 (mod 4) (Paley graph).

4 S is the set of non-quadratic residues of Zp; a is any
quadratic residue for p ≡ 3 (mod 4) and a is any
non-quadratic residue for p ≡ 1 (mod 4).

When q ≡ 1 (mod 4), examples 3 and 4 is an undirected graph.
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A generalization

As Cay(Zp, S)
2 = Cay(Z2

p, S2) where
S2 = {(0, s), (s, 0) | s ∈ S},

for which S does Cay(Z2
q, S) has a perfect 1-code?
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Perfect 1-codes in Cay(Z2
p, S)

Theorem 2

Let p be a prime. If Γ is not a complete graph, then
Γ = Cay(Z2

p, S) has a perfect 1-code if and only if |S| = p− 1
and S satisfy:

1 {s1 | (s1, s2) ∈ S} = Z∗
p, or

2 there is an a ∈ Zp such that {as1 + s2 | (s1, s2) ∈ S} = Z∗
p.

Theorem 3

Let p be a prime. If Γ is not a complete graph, then
Γ = Cay(Z2

p, S) has a perfect 1-code if and only if |S| = p− 1
and there are a, b ∈ Zp such that {as1 + bs2 | (s1, s2) ∈ S} = Z∗

p.
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Motivation and problem 2

Deng (2014) :

Characterization of Cay(Zn, S) that has a perfect 1-code of
prime size.

Feng, Huang, Zhou (2017):

Characterization of Cay(Zn, S) of degree prime minus one
that has a perfect 1-code.
Characterization of Cay(Zn, S) of p

k − 1 degree that has a
perfect 1-code where pk is relatively prime to n

pk .

Deng, Sun, Liu, Wang (2017): Perfect 1-codes on

Cay(Zn, S) of degree pq − 1 and pk − 1 for primes p, q, and
|S|+ 1 is relatively prime to n

|S|+1 , and

Cay(Zn, S) where n = pkq, p2q2, pqr, p2qr, pqrs, for different
primes p, q, r, s, and |S|+ 1 is relatively prime to n

|S|+1 .

Problem 2: What if |S|+ 1 is not relatively prime to n
|S|+1?
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Perfect 1-codes in Cay(Zpk, S)

Theorem 4

Let p be an odd prime and Γ = Cay(Zpk , S) a connected non
trivial graph, then Γ admits a perfect 1-code if and only if there
are integers

0 = t0 < t1 < · · · < tn < tn+1 = k

and 1 ≤ la ≤ ta+1 − ta for a = 0, . . . , n such that

S0 =

{
n∑

a=0

(
iap

sa + αi0,...,iap
sa+la

)
| ia = 0, . . . , pla − 1

}

where αi0,...,ia ∈ Zpk .

Note : S0 = S ∪ {0}.
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Proof idea

C is a perfect code of Cay(G,S) ⇐⇒ G = C ⊕ S0.

Lemma 1 [9] :

For a finite abelian group G and A ⊆ G, LA, the set of
elements g ∈ G such that g +A = A is a subgroup of G
(called the subgroups of periods of A), and A = LA ⊕B for
some set B.

De Bruijn (1953) : If Zpk = A⊕B, then one of A and B is periodic.

Lemma 2 [9] :

Let G = A⊕B where A is periodic (A = LA ⊕D), then

G/LA = (D + LA)/LA ⊕ (B + LA)/LA,

where (H + LA)/LA = {h+ LA : h ∈ H}.

Since Zpk/Zpl
∼= Zpk−l , we can use induction on k.
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Good abelian group

For an abelian group G, G = A⊕B is a factorization of G, and A
and B are factors of G.

A group G is said to be good if in every factorization of G, there is
a periodic factor.

All finite good abelian groups are precisely the following groups and
their subgroups:

1 Zp × Zp [5]
2 Zp × Z3 × Z3 [7]
3 Zp × Zq × Z2 × Z2 [7]
4 Zp × Z4 × Z2 [7]
5 Zp3 × Z2 × Z2 [7]
6 Zp2 × Z2 × Z2 × Z2 [7]
7 Zp ×Z2 ×Z2 ×Z2 ×Z2 [7]

8 Z2λ × Z2 [8]
9 Zpλ × Zq [1]
10 Zp2 × Zq2 [6]
11 Zp2 × Zq × Zr [6]
12 Zp × Zq × Zr × Zs [6]
13 Z9 × Z3 [8]
14 Z4 × Z4 [8]

where p, q, r, and s are different primes.
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Perfect 1-codes in Cayley graphs with degree prime minus one

G S0
Requirement on S to be have
a perfect 1-code

Perfect 1-code C

|S0| = 3 no requirement

C = ⟨(a, b, c)⟩ + (x, y, z) where
ord((a, b, c)) = 3p, s1, s2, s1 −
s2 /∈ ⟨(a, b, c)⟩, and (x, y, z) any el-
ement of G

|S0| = p {a|(a, b, c) ∈ S0} = Zp C = {x}× Z3 × Z3 for some x ∈ Zp

Zp × Zq × Z2
2 |S0| = p

{a|(a, b, c, d) ∈ S0} =
Zp

C = {x} × Zq × Z2 × Z2 for some
x ∈ Zp

Zp × Z4 × Z2 |S0| = p {a|(a, b, c) ∈ S0} = Zp C = {x}× Z4 × Z2 for some x ∈ Zp

Z
p3

× Z2
2 |S0| = p

{a (mod p)|(a, b, c) ∈
S0} = Zp

C = ⟨(p, 0, 0), (0, 1, 0), (0, 0, 1)⟩ +
(x, y, z) for some (x, y, z) in G

Z
p2

× Z3
2 |S0| = p

{a (mod p)|(a, b, c, d) ∈
S0} = Zp

C = ⟨(p, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1)⟩ +
(w, x, y, z) for some (w, x, y, z)
in G

Zp × Z4
2 |S0| = p

{a|(a, b, c, d, e) ∈ S0} =
Zp

C = {x} × Z2 × Z2 × Z2 × Z2 for
some x ∈ Zp

Zp × Z3 × Z3
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Perfect codes in Cay(Zp × Z3 × Z3, S)

G S0
Requirement on S to be have a per-
fect 1-code

Perfect 1-code C

|S0| = 3
Γ admits a perfect code for any S =
{s1, s2}

C = ⟨(a, b, c)⟩ + (x, y, z)
where ord((a, b, c)) = 3p,
s1, s2, s1 − s2 /∈ ⟨(a, b, c)⟩,
and (x, y, z) any element of G

|S0| = p {a|(a, b, c) ∈ S0} = Zp
C = {x} × Z3 × Z3 for some
x ∈ Zp

|S0| = 9,
S0 non-periodic

{(b, c) | (a, b, c) ∈ S0} = Z3 ×
Z3

C = {(x, y, z) | x ∈ Zp} for
some y, z ∈ Z3

|S0| = 9,
S0 periodic

S0 = LS0
⊕ D, {(0, b, c) +

LS0
| (a, b, c) + LS0

∈ (D +

LS0
)/LS0

} ∼= Z3 in G/LS0

C = {(a, y, z) + la | a ∈
Zp} for any y, z ∈ Z3 and
la ∈ LS0

|S0| = 3p,
S0 non-periodic

There is (α, β) ∈ Z3 × Z3
such that for every a ∈ Zp, (1)
|{(x, y, z) ∈ S0|x = a}| =
3 and (2) ({(b, c) | (a, b, c) ∈
S0}+ ⟨(b, c)⟩)/ ⟨(b, c)⟩ = (Z3 ×
Z3)/ ⟨(0, b, c)⟩

C = {(x, y + rα, z + rβ) |
r ∈ Z3} for any x ∈ Zp and
y, z ∈ Z3

|S0| = 3p,
S0 periodic

S0 = LS0
⊕ D, There is a

non-zero (α, β) ∈ Z3 × Z3 such
that (D+⟨(0, α, β)⟩)/ ⟨(0, α, β)⟩
is a complete set of residue in
G/ ⟨(0, α, β)⟩ modulo (LS0

+

⟨(0, α, β)⟩)/ ⟨(0, α, β)⟩

C = {a(0, α, β) + la | a ∈
Z3} where la ∈ LS0

Z p
×

Z 3
×

Z 3
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Perfect 1-codes in Cay(Zp × Zq × Z2 × Z2, S)

G S0
Requirement on S to be have a per-
fect 1-code

Perfect 1-code C

|S0| = p {a|(a, b, c, d) ∈ S0} = Zp
C = {x}× Zq × Z2 × Z2 for
some x ∈ Zp

|S0| = pq,
S0 periodic

S0 = {(a, b, ca, da) | a ∈
Zp, b ∈ Zq}, ca, da ∈ Z2

C = {(0, ly,z , y, z) |
(x, y) ∈ Z2 × Z2}, lx,y ∈
LS0

|S0| = pq,
S0 non-periodic,∣∣∣L(S0+LC )/LC

∣∣∣ = q

S0 = {(a, b, ca, da)+ la,b | a ∈
Zp, b ∈ Zq}, ca, da ∈ Z2, la,b ∈
LC

C = LC ∪ (LC +
(w, x, y, z)), where LC =
⟨(0, 0, α, β)⟩ and (y, z) ̸∈
⟨(α, β)⟩

|S0| = pq,
S0 non-periodic,∣∣∣L(S0+LC )/LC

∣∣∣ = p

S0 = {(a, b, cb, db) + la,b | a ∈
Zp, b ∈ Zq}, cb, db ∈ Z2, la,b ∈
LC

C = LC ∪ (LC +
(w, x, y, z)), where LC =
⟨(0, 0, α, β)⟩ and (y, z) ̸∈
⟨(α, β)⟩

|S0| = 2p,
S0 periodic

S0 = LS0
⊕D where |LS0

| = 2,

{a | (a, b, c, d) ∈ D} = Zp

C = {(0, b, aw, av) + la,b |
a ∈ Z2, b ∈ Zq}, la,b ∈
LS0

|S0| = 2p,
S0 non-periodic

S0 = {(α, βb, βc, βd) +
lα,β |α ∈ Zp, β ∈ Z2},
lα,β ∈ LC

C = LC ⊕ D, where
LC = ⟨(0, 0, α, β)⟩ and {b |
(a, b, c, d) ∈ D} = Zq

Z p
×

Z q
×

Z 2
×

Z 2
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Perfect 1-codes in Cay(Zp × Zq × Z2 × Z2, S)

G S0
Requirement on S to be have a per-
fect 1-code

Perfect 1-code C

|S0| = 4,
S0 periodic

S0 = ⟨(0, 0, y, z)⟩ ∪
(⟨(0, 0, y, z)⟩ + (a, b, c, d))
where a, b ̸= 0, (c, d) ̸∈ ⟨(y, z)⟩,
and (y, z) ̸= (0, 0)

C = {(α, β, γα,β , δα,β) |
(α, β) ∈ Zp × Zq}

S0 = {α(0, 0, y, z) +
β(a, b, c, d) + lα,β | α, β ∈ Z2}
where lα,β ∈ LC

C = LC ⊕ D where
LC = ⟨(1, 0, 0, 0)⟩ and
{b | (a, b, c, d) ∈ D} = Zq ,
or LC = ⟨(0, 1, 0, 0)⟩ and
{a | (a, b, c, d) ∈ D} = Zp

{(c, d) | (a, b, c, d) ∈ S0} =
Z2 × Z2

C = ⟨(1, 1, 0, 0)⟩

|S0| = 2pq
S0 = ⟨(1, 1, 0, 0), (0, 0, c, d)⟩
where (c, d) /∈ ⟨(y, z)⟩, (y, z) ̸=
(0, 0)

C = {(0, 0, 0, 0), (w, x, y, z)}

|S0| = 4p,
S0 periodic

S0 = {(a, ba,c,d, c, d)+ la,c,d |
a ∈ Zp, c, d ∈ Z2}, ba,c,d ∈ Zq ,
la,c,d ∈ LS0

C = {(0, b, 0, 0) + lb | b ∈ Zq},
lb ∈ LS0

|S0| = 4p,
S0 non-periodic

S0 = {a, ba,c,d, c, d | a ∈
Zp, c, d ∈ Z2}, ba,c,d ∈ Zq

C = ⟨(0, 1, 0, 0)⟩

Z p
×

Z q
×

Z 2
×

Z 2

|S0| = 4,
S0 non-periodic
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