Perfect codes in Cayley graphs on \mathbb{Z}_p^2 and \mathbb{Z}_{p^k}

Yusuf Hafidh University of Melbourne

Joint work with Sanming Zhou and Binzhou Xia

45th Australasian Combinatorics Conference University of Western Australia 13 December 2023

.

Ball

Let u be a vertex of a connected graph Γ and r be a positive integer. The *ball* with radius r centered at u is denoted by $B_r(u)$. This is the set of vertices with distance at most r to u, i.e. $B_r(u) = \{v : d(v, u) \le r\}$.

Perfect *r*-code

A set of vertices C of Γ , is called a *perfect* r-code in Γ if $\{B_r(u) : u \in C\}$ is a partition of $V(\Gamma)$.

Yusuf Hafidh Perfect codes in Cayley graphs on \mathbb{Z}_p^2 and \mathbb{Z}_{pk}

Image: A image: A

Perfect 2-code in grid graph

Figure 1. Grid graph

→ < ∃→

Perfect 2-code in grid graph

Figure 1. Grid graph

 $\mathsf{Perfect}\ 2\mathsf{-}\mathsf{code}\ C$

- ∢ ⊒ →

Perfect 2-code in grid graph

Figure 1. Grid graph

Perfect 2-code C

Balls with radius 2 centered at vertices in C

Yusuf Hafidh Perfect codes in Cayley graphs on \mathbb{Z}_{p}^{2} and \mathbb{Z}_{pk}

▶ < Ξ >

• A perfect *r*-code is an *r*-error correcting code in coding theory.

▶ < 글 ▶ < 글 ▶</p>

• A perfect *r*-code is an *r*-error correcting code in coding theory. (Also an error detecting code)

• • = • • = •

- A perfect *r*-code is an *r*-error correcting code in coding theory. (Also an error detecting code)
 - Coding theory : perfect r-code in q-ary alphabet of length n.
 - Graph theory : perfect *r*-code in the Hamming graph $H(n,q) = \underbrace{K_q \Box \cdots \Box K_q}_{K_q}$.

n times

.

- A perfect r-code is an r-error correcting code in coding theory. (Also an error detecting code)
 - Coding theory : perfect *r*-code in *q*-ary alphabet of length *n*.
 - Graph theory : perfect *r*-code in the Hamming graph $H(n,q) = \underbrace{K_q \Box \cdots \Box K_q}_{K_q}.$ n times

• A perfect 1-code is a dominating set in graph theory.

Cayley graph

Let G be a group and $S \subseteq G \setminus \{0\}$. The Cayley graph $\Gamma = Cay(G, S)$ is the graph with vertex set G and edges from $x \in G$ to x + s, $s \in S$.

Cayley graph

Let G be a group and $S \subseteq G \setminus \{0\}$. The Cayley graph $\Gamma = Cay(G, S)$ is the graph with vertex set G and edges from $x \in G$ to $x + s, s \in S$.

- If S is closed under taking inverse elements (i.e. S = -S), then Γ is undirected.
- **2** If S generates G, then Γ is connected.

/□ ▶ < 글 ▶ < 글 ▶

Cayley graph $Cay(\mathbb{Z}_{17}, \{1, \pm 5\})$

Figure 3. Cayley graph $Cay(\mathbb{Z}_{17}, \{1, \pm 5\})$

<ロト <問 > < 注 > < 注 >

• q-ary alphabet of length n using Hamming distance is represented as $H(q, n) = Cay(\mathbb{Z}_q, S)^n$ where $S = \mathbb{Z}_q \setminus \{0\}$.

• • = • • = •

- q-ary alphabet of length n using Hamming distance is represented as $H(q, n) = Cay(\mathbb{Z}_q, S)^n$ where $S = \mathbb{Z}_q \setminus \{0\}$.
- q-ary alphabet of length n using Lee distance is represented as $Cay(\mathbb{Z}_q, S)^n$ where $S = \{\pm 1\}$.

- q-ary alphabet of length n using Hamming distance is represented as $H(q, n) = Cay(\mathbb{Z}_q, S)^n$ where $S = \mathbb{Z}_q \setminus \{0\}$.
- q-ary alphabet of length n using Lee distance is represented as $Cay(\mathbb{Z}_q, S)^n$ where $S = \{\pm 1\}$.
- Problem 1: For which S does the Cayley graph $Cay(\mathbb{Z}_q, S)^n$ has a perfect code?

Theorem 1

Let p be an odd prime and S a non-empty subset of \mathbb{Z}_p . Then $\Gamma = Cay(\mathbb{Z}_p, S)^2$ has a perfect 1-code if and only if $|S| = \frac{p-1}{2}$ and there is an $a \in \mathbb{Z}_p^*$ such that $aS \cap (-S) = \emptyset$.

Moreover, the perfect 1-codes are $\{(n, an + b) \mid n \in \mathbb{Z}_p\}$ for any $b \in \mathbb{Z}_p$.

• • = • • = •

Theorem 1

Let p be an odd prime and S a non-empty subset of \mathbb{Z}_p . Then $\Gamma = Cay(\mathbb{Z}_p, S)^2$ has a perfect 1-code if and only if $|S| = \frac{p-1}{2}$ and there is an $a \in \mathbb{Z}_p^*$ such that $aS \cap (-S) = \emptyset$.

Moreover, the perfect 1-codes are $\{(n, an + b) \mid n \in \mathbb{Z}_p\}$ for any $b \in \mathbb{Z}_p$.

Note: Condition could be $\exists a \in \mathbb{Z}_p^* \ni aS \cap S = \emptyset$

• If $Cay(\mathbb{Z}_p, S)^2$ has a perfect code C then $\mathbb{Z}_p^2 = C \oplus \{(0,0), (0,s), (s,0) \mid s \in S\}.$

<<p>(日)

- If $Cay(\mathbb{Z}_p, S)^2$ has a perfect code C then $\mathbb{Z}_p^2 = C \oplus \{(0,0), (0,s), (s,0) \mid s \in S\}.$
- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_p^2 of order p.

I ≡ ▶ <</p>

- If $Cay(\mathbb{Z}_p, S)^2$ has a perfect code C then $\mathbb{Z}_p^2 = C \oplus \{(0,0), (0,s), (s,0) \mid s \in S\}.$
- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_p^2 of order p.
- There is an $a \in \mathbb{Z}_p^*$ such that $C = \{(n, an + b) \mid n \in \mathbb{Z}_p\},\ b \in \mathbb{Z}_p.$

• • = • • =

- If $Cay(\mathbb{Z}_p, S)^2$ has a perfect code C then $\mathbb{Z}_p^2 = C \oplus \{(0,0), (0,s), (s,0) \mid s \in S\}.$
- Rédei and Zwei (1947) : C is a coset of \mathbb{Z}_p^2 of order p.
- There is an $a \in \mathbb{Z}_p^*$ such that $C = \{(n, an + b) \mid n \in \mathbb{Z}_p\},\ b \in \mathbb{Z}_p.$
- Establish that $as_1 \neq -s_2$ for $s_1, s_2 \in S$.

→ ∃ → < ∃</p>

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0,5)	(1, 5)	(2,5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0,3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	(5, 3)	(6, 3)
(0,2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0,1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2,0)	(3,0)	(4, 0)	(5, 0)	(6, 0)

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0,0) \in C$

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0,3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	(5, 3)	(6, 3)
(0,2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0,1)	(1, 1)	(2, 1)	(3,1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

<ロ> <問> < 同> < 回> < 回> < 回</p>

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0,0) \in C$

Ball centered at (0,0)

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2,5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0,3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	(5, 3)	(6, 3)
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0, 1)	(1, 1)	(2, 1)	(3,1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0,0) \in C$

Ball centered at (0,0)

 $C = \{(n, an) \mid n \in \mathbb{Z}_p\}$

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0,3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)	(5, 3)	(6, 3)
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

・ 回 ト ・ ヨ ト ・ ヨ ト …

900

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0,0) \in C$

Ball centered at (0,0)

 $C = \{(n, an) \mid n \in \mathbb{Z}_p\}$

For $(s_1, as_1) \in C, s_1 \in S$,

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0, 3)	(1, 3)	(2, 3)	(3,3)	(4, 3)		(6, 3)
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0, 0) \in C$

Ball centered at (0,0)

 $C = \{(n, an) \mid n \in \mathbb{Z}_p\}$

For $(s_1, as_1) \in C, s_1 \in S$, $as_1 + s_2 \neq 0$, for all $s_2 \in S$

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0, 3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)		(6, 3)
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

→ < Ξ → <</p>

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$

Consider $(0, 0) \in C$

Ball centered at (0,0)

 $C = \{(n, an) \mid n \in \mathbb{Z}_p\}$

For $(s_1, as_1) \in C, s_1 \in S$, $as_1 + s_2 \neq 0$, for all $s_2 \in S$

 $aS \cap (-S) \neq 0$

(0, 6)	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, 6)
(0, 5)	(1, 5)	(2,5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	(6, 4)
(0, 3)	(1, 3)	(2, 3)	(3, 3)	(4, 3)		(6, 3)
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	(6, 2)
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	(6, 1)
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	(6, 0)

(日) ト イ ヨ ト イ ヨ ト

 $\Gamma = Cay(\mathbb{Z}_7, \{1, 4, 5\})^2$ (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)Consider $(0,0) \in C$ (0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)Ball centered at (0,0)(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) $C = \{(n, an) \mid n \in \mathbb{Z}_n\}$ (0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)For $(s_1, as_1) \in C, s_1 \in S$, $as_1 + s_2 \neq 0$, for all $s_2 \in S$ (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) $aS \cap (-S) \neq 0$ (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

If $aS \cap (-S) \neq \emptyset$, then $C = \{(n, an) \mid n \in \mathbb{Z}_p\}$ is a perfect code.

•
$$S = \left\{1, 2, \dots, \frac{p-1}{2}\right\}; a = 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

•
$$S = \left\{1, 2, \dots, \frac{p-1}{2}\right\}; a = 1.$$

• $S = \left\{x_i \mid x_i \in \{\pm i\}, i = 1, \dots, \frac{p-1}{2}\right\}; a = 1.$

S is the set of quadratic residues of Z_p; a is any quadratic residue for p ≡ 3 (mod 4) and a is any non-quadratic residue for p ≡ 1 (mod 4) (Paley graph).

▶ 《注▶ 《注▶

•
$$S = \left\{1, 2, \dots, \frac{p-1}{2}\right\}; a = 1.$$

• $S = \left\{x_i \mid x_i \in \{\pm i\}, i = 1, \dots, \frac{p-1}{2}\right\}; a = 1.$

- S is the set of quadratic residues of Z_p; a is any quadratic residue for p ≡ 3 (mod 4) and a is any non-quadratic residue for p ≡ 1 (mod 4) (Paley graph).
- S is the set of non-quadratic residues of Z_p; a is any quadratic residue for p ≡ 3 (mod 4) and a is any non-quadratic residue for p ≡ 1 (mod 4).

When $q \equiv 1 \pmod{4}$, examples 3 and 4 is an undirected graph.

As
$$Cay(\mathbb{Z}_p, S)^2 = Cay(\mathbb{Z}_p^2, S_2)$$
 where $S_2 = \{(0, s), (s, 0) \mid s \in S\},\$

for which S does $Cay(\mathbb{Z}_q^2, S)$ has a perfect 1-code?

▲□ ▼ ▲ □ ▼ ▲ □ ▼

Theorem 2

Let p be a prime. If Γ is not a complete graph, then $\Gamma = Cay(\mathbb{Z}_p^2, S)$ has a perfect 1-code if and only if |S| = p - 1and S satisfy:

•
$$\{s_1 \mid (s_1, s_2) \in S\} = \mathbb{Z}_p^*$$
, or

2 there is an $a \in \mathbb{Z}_p$ such that $\{as_1 + s_2 \mid (s_1, s_2) \in S\} = \mathbb{Z}_p^*$.

• • = • • = •

Theorem 2

Let p be a prime. If Γ is not a complete graph, then $\Gamma = Cay(\mathbb{Z}_p^2, S)$ has a perfect 1-code if and only if |S| = p - 1and S satisfy:

•
$$\{s_1 \mid (s_1, s_2) \in S\} = \mathbb{Z}_p^*$$
, or

2 there is an $a \in \mathbb{Z}_p$ such that $\{as_1 + s_2 \mid (s_1, s_2) \in S\} = \mathbb{Z}_p^*$.

Theorem 3

Let p be a prime. If Γ is not a complete graph, then $\Gamma = Cay(\mathbb{Z}_p^2, S)$ has a perfect 1-code if and only if |S| = p - 1and there are $a, b \in \mathbb{Z}_p$ such that $\{as_1 + bs_2 \mid (s_1, s_2) \in S\} = \mathbb{Z}_p^*$.

< ロ > < 同 > < 三 > < 三 >

Motivation and problem 2

- Deng (2014) :
 - Characterization of $Cay(\mathbb{Z}_n,S)$ that has a perfect 1-code of prime size.
- Feng, Huang, Zhou (2017):
 - Characterization of $Cay(\mathbb{Z}_n, S)$ of degree prime minus one that has a perfect 1-code.
 - Characterization of Cay(Z_n, S) of p^k 1 degree that has a perfect 1-code where p^k is relatively prime to n/n^k.
- Deng, Sun, Liu, Wang (2017): Perfect 1-codes on
 - $Cay(\mathbb{Z}_n, S)$ of degree pq 1 and $p^k 1$ for primes p, q, and |S| + 1 is relatively prime to $\frac{n}{|S|+1}$, and
 - $Cay(\mathbb{Z}_n, S)$ where $n = p^k q, p^2 q^2, pqr, p^2 qr, pqrs$, for different primes p, q, r, s, and |S| + 1 is relatively prime to $\frac{n}{|S|+1}$.

- Deng (2014) :
 - Characterization of $Cay(\mathbb{Z}_n,S)$ that has a perfect 1-code of prime size.
- Feng, Huang, Zhou (2017):
 - Characterization of $Cay(\mathbb{Z}_n, S)$ of degree prime minus one that has a perfect 1-code.
 - Characterization of Cay(Z_n, S) of p^k 1 degree that has a perfect 1-code where p^k is relatively prime to n/n^k.
- Deng, Sun, Liu, Wang (2017): Perfect 1-codes on
 - $Cay(\mathbb{Z}_n, S)$ of degree pq 1 and $p^k 1$ for primes p, q, and |S| + 1 is relatively prime to $\frac{n}{|S|+1}$, and
 - $Cay(\mathbb{Z}_n, S)$ where $n = p^k q, p^2 q^2, pqr, p^2 qr, pqrs$, for different primes p, q, r, s, and |S| + 1 is relatively prime to $\frac{n}{|S|+1}$.

• Problem 2: What if |S| + 1 is not relatively prime to $\frac{n}{|S|+1}$?

Theorem 4

Let p be an odd prime and $\Gamma=Cay(\mathbb{Z}_{p^k},S)$ a connected non trivial graph, then Γ admits a perfect 1-code if and only if there are integers

$$0 = t_0 < t_1 < \dots < t_n < t_{n+1} = k$$

and $1 \leq l_a \leq t_{a+1} - t_a$ for $a = 0, \ldots, n$ such that

$$S_0 = \left\{ \sum_{a=0}^n \left(i_a p^{s_a} + \alpha_{i_0,\dots,i_a} p^{s_a + l_a} \right) \mid i_a = 0,\dots, p^{l_a} - 1 \right\}$$

where $\alpha_{i_0,\ldots,i_a} \in \mathbb{Z}_{p^k}$.

Note : $S_0 = S \cup \{0\}.$

• • = • • = •

• C is a perfect code of $Cay(G,S) \iff G = C \oplus S_0$.

<ロ> <部> <部> <き> <き> <き> <き</p>

- C is a perfect code of $Cay(G,S) \iff G = C \oplus S_0$.
- Lemma 1 [9] :
 - For a finite abelian group G and A ⊆ G, L_A, the set of elements g ∈ G such that g + A = A is a subgroup of G (called the subgroups of periods of A), and A = L_A ⊕ B for some set B.

(日) ト イ ヨ ト イ ヨ ト

- C is a perfect code of $Cay(G,S) \iff G = C \oplus S_0$.
- Lemma 1 [9] :
 - For a finite abelian group G and A ⊆ G, L_A, the set of elements g ∈ G such that g + A = A is a subgroup of G (called the subgroups of periods of A), and A = L_A ⊕ B for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^k} = A \oplus B$, then one of A and B is periodic.

/□ ▶ < 글 ▶ < 글 ▶

- C is a perfect code of $Cay(G,S) \iff G = C \oplus S_0$.
- Lemma 1 [9] :
 - For a finite abelian group G and A ⊆ G, L_A, the set of elements g ∈ G such that g + A = A is a subgroup of G (called the subgroups of periods of A), and A = L_A ⊕ B for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^k} = A \oplus B$, then one of A and B is periodic.
- Lemma 2 [9] :
 - Let $G = A \oplus B$ where A is periodic $(A = L_A \oplus D)$, then

$$G/L_A = (D + L_A)/L_A \oplus (B + L_A)/L_A,$$

where $(H + L_A)/L_A = \{h + L_A : h \in H\}.$

- C is a perfect code of $Cay(G,S) \iff G = C \oplus S_0$.
- Lemma 1 [9] :
 - For a finite abelian group G and A ⊆ G, L_A, the set of elements g ∈ G such that g + A = A is a subgroup of G (called the subgroups of periods of A), and A = L_A ⊕ B for some set B.
- De Bruijn (1953) : If $\mathbb{Z}_{p^k} = A \oplus B$, then one of A and B is periodic.
- Lemma 2 [9] :
 - Let $G = A \oplus B$ where A is periodic $(A = L_A \oplus D)$, then

$$G/L_A = (D + L_A)/L_A \oplus (B + L_A)/L_A,$$

where $(H + L_A)/L_A = \{h + L_A : h \in H\}.$

• Since $\mathbb{Z}_{p^k}/\mathbb{Z}_{p^l} \cong \mathbb{Z}_{p^{k-l}}$, we can use induction on k.

• • = • • = •

Good abelian group

- For an abelian group G, $G = A \oplus B$ is a factorization of G, and A and B are factors of G.
- A group G is said to be **good** if in every factorization of G, there is a periodic factor.
- All finite good abelian groups are precisely the following groups and their subgroups:

where p, q, r, and s are different primes.

< □ > < □ > < □ > < □ >

G	S_0	Requirement on S to be have a perfect 1-code	Perfect 1-code C
$\mathbb{Z}_p \times \mathbb{Z}_3 \times \mathbb{Z}_3$	$ S_0 = 3$	no requirement	$C=\langle(a,b,c)\rangle+(x,y,z)$ where $ord((a,b,c))=3p,\ s_1,s_2,s_1-s_2\notin\langle(a,b,c)\rangle,$ and (x,y,z) any element of G
	$ S_0 = p$	$\{a (a, b, c) \in S_0\} = \mathbb{Z}_p$	$C = \{x\} \times \mathbb{Z}_3 \times \mathbb{Z}_3$ for some $x \in \mathbb{Z}_p$
$\mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_2^2$	$ S_0 = p$	$ \{a (a, b, c, d) \in S_0\} = \mathbb{Z}_p $	$C = \{x\} \times \mathbb{Z}_q \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for some $x \in \mathbb{Z}_p$
$\mathbb{Z}_p \times \mathbb{Z}_4 \times \mathbb{Z}_2$	$ S_0 = p$	$\{a (a,b,c)\in S_0\}=\mathbb{Z}_p$	$C = \{x\} \times \mathbb{Z}_4 \times \mathbb{Z}_2$ for some $x \in \mathbb{Z}_p$
$\mathbb{Z}_{p^3}\times\mathbb{Z}_2^2$	$ S_0 = p$	$ \{ a \pmod{p} (a, b, c) \in \\ S_0 \} = \mathbb{Z}_p $	$\begin{array}{l} C = \langle (p,0,0), (0,1,0), (0,0,1) \rangle + \\ (x,y,z) \text{ for some } (x,y,z) \text{ in } G \end{array}$
$\mathbb{Z}_{p^2}\times\mathbb{Z}_2^3$	$ S_0 = p$	$\begin{array}{l} \{a \pmod{p} (a,b,c,d) \in \\ S_0 \} = \mathbb{Z}_p \end{array}$	$\begin{array}{ll} C &=& \langle (p,0,0,0), (0,1,0,0), \\ (0,0,1,0), (0,0,0,1) \rangle &+ \\ (w,x,y,z) \ \mbox{for some} \ (w,x,y,z) \\ \mbox{in } G \end{array}$
$\mathbb{Z}_p \times \mathbb{Z}_2^4$	$ S_0 = p$	$ \{a (a, b, c, d, e) \in S_0\} = \mathbb{Z}_p $	$C = \{x\} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for some $x \in \mathbb{Z}_p$

Perfect codes in $Cay(\mathbb{Z}_p \times \mathbb{Z}_3 \times \mathbb{Z}_3, S)$

G	S_0	Requirement on S to be have a per- fect 1-code	Perfect 1-code C
	$ S_0 = 3$	Γ admits a perfect code for any $S=\{s_1,s_2\}$	$\begin{array}{l} C \ = \ \langle (a,b,c) \rangle + (x,y,z) \\ \text{where} \ ord((a,b,c)) \ = \ 3p, \\ s_1,s_2,s_1-s_2 \notin \langle (a,b,c) \rangle, \\ \text{and} \ (x,y,z) \text{ any element of } G \end{array}$
	$ S_0 = p$	$\{a (a,b,c)\in S_0\}=\mathbb{Z}_p$	$C = \{x\} \times \mathbb{Z}_3 \times \mathbb{Z}_3$ for some $x \in \mathbb{Z}_p$
	$ S_0 = 9,$ S_0 non-periodic	$\{(b,c) \mid (a,b,c) \in S_0\} = \mathbb{Z}_3 \times \mathbb{Z}_3$	$C = \{(x, y, z) \mid x \in \mathbb{Z}_p\}$ for some $y, z \in \mathbb{Z}_3$
$\mathbb{Z}_p\times\mathbb{Z}_3\times\mathbb{Z}_3$	$ S_0 = 9,$ S_0 periodic	$ \begin{array}{l} S_{0} \ = \ L_{S_{0}} \ \oplus \ D, \ \{(0,b,c) + \\ L_{S_{0}} \ \ (a,b,c) + L_{S_{0}} \ \in \ (D + \\ L_{S_{0}})/L_{S_{0}}\} \cong \mathbb{Z}_{3} \ \mbox{in} \ G/L_{S_{0}} \end{array} $	$C=\{(a,y,z)+l_a\mid a\in\mathbb{Z}_p\}$ for any $y,z\in\mathbb{Z}_3$ and $l_a\in L_{S_0}$
	$ S_0 =3p,$ S_0 non-periodic	There is $(\alpha, \beta) \in \mathbb{Z}_3 \times \mathbb{Z}_3$ such that for every $a \in \mathbb{Z}_p$, (1) $ \{(x, y, z) \in S_0 x = a\} =$ 3 and (2) $(\{(b, c) \mid (a, b, c) \in$ $S_0\} + \langle (b, c) \rangle / \langle (b, c) \rangle = (\mathbb{Z}_3 \times \mathbb{Z}_3) / \langle (0, b, c) \rangle$	$\begin{array}{l} C = \{(x,y+r\alpha,z+r\beta) \mid \\ r \in \mathbb{Z}_3\} \text{ for any } x \in \mathbb{Z}_p \text{ and } \\ y,z \in \mathbb{Z}_3 \end{array}$
	$ S_0 = 3p,$ S_0 periodic	$\begin{array}{lll} S_0 &=& L_{S_0} \oplus D, \mbox{ There is a} \\ & \mbox{non-zero} \ (\alpha,\beta) \in \mathbb{Z}_3 \times \mathbb{Z}_3 \mbox{ such that } (D+\langle (0,\alpha,\beta)\rangle)/ \langle (0,\alpha,\beta)\rangle \\ & \mbox{is a complete set of residue in} \\ & G/ \langle (0,\alpha,\beta)\rangle \mbox{ modulo } (L_{S_0} + \langle (0,\alpha,\beta)\rangle)/ \langle (0,\alpha,\beta)\rangle \end{array}$	$\begin{array}{l} C = \{a(0,\alpha,\beta) + l_a ~ ~ a \in \\ \mathbb{Z}_3\} \text{ where } l_a \in L_{S_0} \end{array}$

Perfect 1-codes in $Cay(\mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_2 \times \mathbb{Z}_2, S)$

G	S_0	Requirement on S to be have a per- fect 1-code	Perfect 1-code C
	$ S_0 = p$	$\{a (a,b,c,d)\in S_0\}=\mathbb{Z}_p$	$C = \{x\} \times \mathbb{Z}_q \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for some $x \in \mathbb{Z}_p$
	$ S_0 = pq,$ S_0 periodic	$\begin{array}{rcl} S_0 &=& \{(a,b,c_a,d_a) & \mid & a & \in \\ \mathbb{Z}_p, b \in \mathbb{Z}_q\}, c_a, d_a \in \mathbb{Z}_2 \end{array}$	$\begin{array}{lll} C &=& \{(0, l_{y,z}, y, z) & \\ (x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_2\}, l_{x,y} &\in \\ L_{S_0} \end{array}$
$\mathbb{Z}_2 \times \mathbb{Z}_2$	$ \begin{split} S_0 &= pq, \\ S_0 \text{ non-periodic,} \\ \left L_{(S_0+L_C)/L_C}\right &= q \end{split} $	$\begin{array}{l} S_0 = \{(a,b,c_a,d_a) + l_{a,b} \mid a \in \\ \mathbb{Z}_p, b \in \mathbb{Z}_q\}, c_a, d_a \in \mathbb{Z}_2, l_{a,b} \in \\ L_C \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\mathbb{Z}_p\times\mathbb{Z}_q\times$	$ \begin{vmatrix} S_0 = pq, \\ S_0 \text{ non-periodic,} \\ \left L_{(S_0 + L_C) / L_C} \right = p $	$\begin{array}{l} S_0 = \{(a,b,c_b,d_b) + l_{a,b} \mid a \in \\ \mathbb{Z}_p, b \in \mathbb{Z}_q\}, c_b, d_b \in \mathbb{Z}_2, l_{a,b} \in \\ L_C \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$ S_0 = 2p,$ S_0 periodic	$\begin{split} S_0 &= L_{S_0} \oplus D \text{ where } L_{S_0} = 2, \\ \{a \mid (a,b,c,d) \in D\} = \mathbb{Z}_p \end{split}$	$\begin{array}{l} C = \{(0, b, aw, av) + l_{a,b} \mid \\ a \in \mathbb{Z}_2, b \in \mathbb{Z}_q\}, \ l_{a,b} \in \\ L_{S_0} \end{array}$
	$ S_0 = 2p,$ S_0 non-periodic	$S_{0} = \{(\alpha, \beta b, \beta c, \beta d) + l_{\alpha, \beta} \alpha \in \mathbb{Z}_{p}, \beta \in \mathbb{Z}_{2}\}, \\ l_{\alpha, \beta} \in L_{C}$	$\begin{array}{ll} C &= L_C \oplus D, \ \text{where} \\ L_C &= \langle (0,0,\alpha,\beta) \rangle \ \text{and} \ \{b \mid \\ (a,b,c,d) \in D \} = \mathbb{Z}_q \end{array}$

Perfect 1-codes in $Cay(\mathbb{Z}_p \times \mathbb{Z}_q \times \mathbb{Z}_2 \times \mathbb{Z}_2, S)$

G	S_0	Requirement on S to be have a per- fect 1-code	Perfect 1-code C
$\mathbb{Z}_{p}\times\mathbb{Z}_{q}\times\mathbb{Z}_{2}\times\mathbb{Z}_{2}$	$ S_0 = 4,$ S_0 periodic	$\begin{array}{lll} S_0 &=& \langle (0,0,y,z)\rangle &\cup \\ (\langle (0,0,y,z)\rangle &+& (a,b,c,d)) \\ \text{where } a,b \neq 0, (c,d) \not\in \langle (y,z)\rangle, \\ \text{and } (y,z) \neq (0,0) \end{array}$	$C = \{(\alpha, \beta, \gamma_{\alpha, \beta}, \delta_{\alpha, \beta}) \mid \\ (\alpha, \beta) \in \mathbb{Z}_p \times \mathbb{Z}_q\}$
	$ S_0 =4$, S_0 non-periodic	$\begin{array}{l} S_0 &= \{\alpha(0,0,y,z) \ + \\ \beta(a,b,c,d) + l_{\alpha,\beta} \mid \alpha,\beta \in \mathbb{Z}_2 \} \\ \text{where } l_{\alpha,\beta} \in L_C \end{array}$	$\begin{array}{lll} C &=& L_C \oplus D \text{where} \\ L_C &=& \langle (1,0,0,0)\rangle \text{and} \\ \{b &\mid (a,b,c,d) \in D\} = \mathbb{Z}_q, \\ \text{or} & L_C &=& \langle (0,1,0,0)\rangle \text{and} \\ \{a \mid (a,b,c,d) \in D\} = \mathbb{Z}_p \end{array}$
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C = \langle (1, 1, 0, 0) \rangle$
	$ S_0 = 2pq$	$\begin{array}{ll} S_0 &=& \langle (1,1,0,0), (0,0,c,d) \rangle \\ \text{where } (c,d) \notin \langle (y,z) \rangle, \ (y,z) \neq \\ (0,0) \end{array}$	$C = \{(0, 0, 0, 0), (w, x, y, z)\}$
	$ S_0 = 4p,$ S_0 periodic	$S_{0} = \{(a, b_{a,c,d}, c, d) + l_{a,c,d} \mid a \in \mathbb{Z}_{p}, c, d \in \mathbb{Z}_{2}\}, b_{a,c,d} \in \mathbb{Z}_{q}, l_{a,c,d} \in L_{S_{0}}$	$\begin{array}{l} C = \{(0,b,0,0) + l_b \mid b \in \mathbb{Z}_q\}, \\ l_b \in L_{S_0} \end{array}$
	$ S_0 = 4p,$ S_0 non-periodic	$ \begin{array}{lll} S_0 &=& \{a, b_{a,c,d}, c, d \mid a \in \\ \mathbb{Z}_p, c, d \in \mathbb{Z}_2 \}, b_{a,c,d} \in \mathbb{Z}_q \end{array} $	$C = \langle (0, 1, 0, 0) \rangle$

<ロ> <四> <四> <三</p>

References

- N. G. de Bruijn, On the factorisation of cyclic groups, Indag. Math. Kon. Ned, Akad. Wetensch. Amsterdam, 15 (1953), 370–377.
- [2] Y.P. Deng, Efficient dominating sets in circulant graphs with domination number prime, Inform. Process. Lett., 114 (2014), 700–702.
- [3] Y.P. Deng, Y.Q. Sun, Q. Liu and H.C. Wang, Efficient dominating sets in circulant graphs, Discrete Math., 340(7) (2017), 1503–1507.
- [4] R. Feng, H. Huang, and S. Zhou, Perfect codes in circulant graphs, Discrete Math., 340 (2017), 1522–1527.
- [5] L. Rédei and Zwei, Liickensatze iiber Polynome in endlichen Primkorpern mit Anwendungen auf die endlichen Abelschen Gruppen und die Gaussischen Summen. Acta Math., 79 (1947), 273–290.
- [6] A. D. Sands, On the factorisation of finite abelian groups, Acta Math. Acad. Sci. Hung., g (1957), pp. 65–86.
- [7] A. D. Sands, On the factorisation of finite abelian groups, II, Acta Math. Acad. Sci. Hung., 13 (1962), no.1-2, 153–169.
- [8] A. D. Sands, The factorization of abelian groups, The Quarterly Journal of Mathematics, 10 (1959), 81–91.
- [9] S. Szabó and A.D. Sands, Factoring Groups into Subsets, CRC Press, Taylor and Erancis Group. (2009)