Large sets of infinite-dimensional q-Steiner systems

Dan Hawtin

45ACC UWA

Faculty of Mathematics, University of Rijeka

Infinite designs

[P.J. Cameron, B.S. Webb. What is an infinite design? Journal of Combinatorial Designs, 10(2):79-91, 2002.]

- Discusses designs on infinite sets.
- Underlying set may be countably or uncountably infinite.
- Block size may be finite or infinite.
- Gives several families of examples and some existence results.

Steiner systems

Definition (Steiner system)

If \mathscr{V} is a set, then an $S(t, k, \mathscr{V})$ is a collection \mathscr{B} of k-subsets of \mathscr{V} such that every t-subset of \mathscr{V} is contained in precisely one element of \mathscr{B}.

Some finite examples:

- A projective plane of order k is an $S\left(2, k+1,\left[k^{2}+k+1\right]\right)$.
- An affine plane of order k is an $S\left(2, k,\left[k^{2}\right]\right)$.
- The Witt designs are Steiner systems with $t=3,4$ or 5 .

There are no known (finite) $S(t, k, \mathscr{V})$ for $t \geq 6$. However, by a result of Keevash (2014), they must exist.

Large sets

Definition (Large set)

An $L S(t, k, \mathscr{V})$ is a collection of $S(t, k, \mathscr{V})$ systems that form a partition of the set of all k-subsets of \mathscr{V}.

Examples:

- Lu (and subsequently Teirlinck) constructed an $L S(2,3, \mathscr{T})$ with $7 \neq|\mathscr{V}| \equiv 1,3(\bmod 6)$ (all possible values).
- An $L S(2,4, \mathscr{V})$ exists with $|\mathscr{V}|=13$ (Chouinard 1983) and $|\mathscr{V}|=16$ (Mathon 1997).
- Grannell et al. (1991) gave an explicit construction for $L S(t, t+1, \mathscr{V})$ systems, \mathscr{V} countably and uncountably infinite.

q-Steiner systems

Definition (q-Steiner system)

If V is a vector-space over \mathbb{F}_{q}, then an $S(t, k, V)_{q}$, is a collection \mathscr{B} of k-spaces of V such that every t-space of V is contained in precisely one element of \mathscr{B}.

- If $t=1$ then this is a spread.
- For $t \geq 2$, only known examples are $S(2,3, V)_{2}$ systems, where $\operatorname{dim} V=13$ (Braun et al. 2016).
- Asymptotic existence (Ray-Chaudhuri and Singhi, 1989).
- No known infinite-dimensional examples.

Existence

Definition (Large set)

An $L S(t, k, V)_{q}$ is a collection of $S(t, k, V)_{q}$ systems that form a partition of the set of all k-subspaces of V.

Theorem (Cameron 1995)

(Roughly) Large sets of $L S(t, k, \mathscr{V})$ and $L S(t, k, V)_{q}$ exist for all $1<t<k$ when $|\mathscr{V}|$ or $\operatorname{dim} V$ has any infinite cardinality.

Linearised polynomials

Let F be the algebraic closure of \mathbb{F}_{q}.

Definition

A linearised polynomial or q-polynomial is a polynomial $f \in F[x]$ of the form

$$
f=a_{0} x+a_{1} x^{q}+\cdots+a_{k} x^{q^{k}} .
$$

Linearised polynomials

Let F be the algebraic closure of \mathbb{F}_{q}.

Definition

A linearised polynomial or q-polynomial is a polynomial $f \in F[x]$ of the form

$$
f=a_{0} x+a_{1} x^{q}+\cdots+a_{k} x^{q^{k}}
$$

If $a, b \in F$ then $(a+b)^{q^{i}}=a^{q^{i}}+b^{q^{i}}$.

- $f: F \rightarrow F ; x \mapsto f(x)$ is \mathbb{F}_{q}-linear.
- The roots of f form an \mathbb{F}_{q}-linear subspace of F.

If $a_{k} \neq 0$ then we say f has q-degree k.

Linearised polynomials

A few applications of linearised polynomials:

- permutation polynomials
- rank-distance codes
- linear sets

Linearised polynomials

A few applications of linearised polynomials:

- permutation polynomials
- rank-distance codes
- linear sets

Question

Is there a natural way to construct a q-Steiner system from a family of linearised polynomials?

Coefficients and determinants

Let $V=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ be a k-dimensional \mathbb{F}_{q}-subspace of F and let

$$
f=\left|\begin{array}{ccccc}
x & x^{q} & x^{q^{2}} & \cdots & x^{q^{k}} \\
v_{1} & v_{1}^{q} & v_{1}^{q^{2}} & \cdots & v_{1}^{q^{k}} \\
v_{2} & v_{2}^{q} & v_{2}^{q^{2}} & \cdots & v_{2}^{q^{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k} & v_{k}^{q} & v_{k}^{q^{2}} & \cdots & v_{k}^{q^{k}}
\end{array}\right| .
$$

Then f is a q-degree k linearised polynomial with roots V.

Coefficients and determinants

Let $V=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ be a k-dimensional \mathbb{F}_{q}-subspace of F and let

$$
f=\left|\begin{array}{ccccc}
x & x^{q} & x^{q^{2}} & \cdots & x^{q^{k}} \\
v_{1} & v_{1}^{q} & v_{1}^{q^{2}} & \cdots & v_{1}^{q^{k}} \\
v_{2} & v_{2}^{q} & v_{2}^{q^{2}} & \cdots & v_{2}^{q^{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{k} & v_{k}^{q} & v_{k}^{q^{2}} & \cdots & v_{k}^{q^{k}}
\end{array}\right| .
$$

Then f is a q-degree k linearised polynomial with roots V.
The coefficient of $x^{q^{i}}$ in f is the determinant of the $(k \times k)$-minor obtained by deleting the top row and the column containing $x^{q^{i}}$.

The construction

For $a \in F^{\times}$and $B=\left(b_{1}, \ldots, b_{t}\right) \in F^{t}$, define

$$
f_{a, B}=a^{q} x+b_{1} x^{q}+\cdots+b_{t} x^{q^{t}}+a x^{q^{t+1}}
$$

Furthermore, define

$$
\mathscr{B}_{a}=\left\{\operatorname{ker} f_{a, B} \mid B \in F^{t}\right\} .
$$

Theorem (DRH 2023+)

The set $\left\{\mathscr{B}_{a} \mid a \in F^{\times}\right\}$is an $L S(t, t+1, F)_{q}$ for any $t \geq 1$ and any prime power q.

One part of the proof

Let $B, C \in F^{t}$. Then

$$
\begin{aligned}
f_{a, B}-f_{a, C} & =\left(b_{1}-c_{1}\right) x^{q}+\cdots+\left(b_{t}-c_{t}\right) x^{q^{t}} \\
& =g^{q},
\end{aligned}
$$

for some linearised polynomial g with q-degree $t-1$.

- The GCD of $f_{a, B}$ and $f_{a, C}$ divides g.
- $\operatorname{ker} g$ has dimension at most $t-1$.

Thus, any pair of distinct elements of \mathscr{B}_{a} intersect in at most a ($t-1$)-space.

What next?

Question

Can a similar construction produce an $L S(t, k, F)_{q}$ for all t, k with $0<t<k$?

Thanks for listening!

Enjoy the excursion!

