Large sets of infinite-dimensional q-Steiner systems

Dan Hawtin 45ACC UWA

Faculty of Mathematics, University of Rijeka

[P.J. Cameron, B.S. Webb. What is an infinite design? *Journal of Combinatorial Designs*, 10(2):79–91, 2002.]

- Discusses designs on infinite sets.
- Underlying set may be countably or uncountably infinite.
- Block size may be finite or infinite.
- Gives several families of examples and some existence results.

Definition (Steiner system)

If \mathscr{V} is a set, then an $S(t, k, \mathscr{V})$ is a collection \mathscr{B} of k-subsets of \mathscr{V} such that every t-subset of \mathscr{V} is contained in precisely one element of \mathscr{B} .

Some finite examples:

- A projective plane of order k is an $S(2, k + 1, [k^2 + k + 1])$.
- An affine plane of order k is an $S(2, k, [k^2])$.
- The Witt designs are Steiner systems with t = 3, 4 or 5.

There are no known (finite) $S(t, k, \mathscr{V})$ for $t \ge 6$. However, by a result of Keevash (2014), they must exist.

Definition (Large set)

An $LS(t, k, \mathcal{V})$ is a collection of $S(t, k, \mathcal{V})$ systems that form a partition of the set of all k-subsets of \mathcal{V} .

Examples:

- Lu (and subsequently Teirlinck) constructed an $LS(2, 3, \mathcal{V})$ with $7 \neq |\mathcal{V}| \equiv 1, 3 \pmod{6}$ (all possible values).
- An $LS(2, 4, \mathcal{V})$ exists with $|\mathcal{V}| = 13$ (Chouinard 1983) and $|\mathcal{V}| = 16$ (Mathon 1997).
- Grannell *et al.* (1991) gave an explicit construction for
 LS(t, t + 1, V) systems, V countably and uncountably infinite.

Definition (*q***-Steiner system)**

If V is a vector-space over \mathbb{F}_q , then an $S(t, k, V)_q$, is a collection \mathscr{B} of k-spaces of V such that every t-space of V is contained in precisely one element of \mathscr{B} .

- If t = 1 then this is a spread.
- For $t \ge 2$, only known examples are $S(2, 3, V)_2$ systems, where dim V = 13 (Braun *et al.* 2016).
- Asymptotic existence (Ray-Chaudhuri and Singhi, 1989).
- No known infinite-dimensional examples.

Definition (Large set)

An $LS(t, k, V)_q$ is a collection of $S(t, k, V)_q$ systems that form a partition of the set of all k-subspaces of V.

Theorem (Cameron 1995)

(Roughly) Large sets of $LS(t, k, \mathcal{V})$ and $LS(t, k, V)_q$ exist for all

1 < t < k when $|\mathcal{V}|$ or dim V has any infinite cardinality.

Let F be the algebraic closure of \mathbb{F}_q .

Definition

A linearised polynomial or q-polynomial is a polynomial $f\in F[x]$ of the form

$$f = a_0 x + a_1 x^q + \dots + a_k x^{q^k}.$$

Let F be the algebraic closure of \mathbb{F}_q .

Definition

A linearised polynomial or q -polynomial is a polynomial $f \in F[x]$ of the form

$$f = a_0 x + a_1 x^q + \dots + a_k x^{q^k}.$$

If $a, b \in F$ then $(a + b)^{q^i} = a^{q^i} + b^{q^i}$.

- $f: F \to F; x \mapsto f(x)$ is \mathbb{F}_q -linear.
- The roots of f form an \mathbb{F}_q -linear subspace of F.

If $a_k \neq 0$ then we say f has q-degree k.

A few applications of linearised polynomials:

- permutation polynomials
- rank-distance codes
- linear sets

A few applications of linearised polynomials:

- permutation polynomials
- rank-distance codes
- linear sets

Question

Is there a natural way to construct a *q*-Steiner system from a family of linearised polynomials?

Let $V=\langle v_1,\ldots,v_k\rangle$ be a $k\text{-dimensional }\mathbb{F}_q\text{-subspace of }F$ and let

$$f = \begin{vmatrix} x & x^q & x^{q^2} & \cdots & x^{q^k} \\ v_1 & v_1^q & v_1^{q^2} & \cdots & v_1^{q^k} \\ v_2 & v_2^q & v_2^{q^2} & \cdots & v_2^{q^k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_k & v_k^q & v_k^{q^2} & \cdots & v_k^{q^k} \end{vmatrix}.$$

Then f is a q-degree k linearised polynomial with roots V.

Let $V = \langle v_1, \dots, v_k \rangle$ be a k-dimensional \mathbb{F}_q -subspace of F and let

$$f = \begin{vmatrix} x & x^q & x^{q^2} & \cdots & x^{q^k} \\ v_1 & v_1^q & v_1^{q^2} & \cdots & v_1^{q^k} \\ v_2 & v_2^q & v_2^{q^2} & \cdots & v_2^{q^k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_k & v_k^q & v_k^{q^2} & \cdots & v_k^{q^k} \end{vmatrix}.$$

Then f is a q-degree k linearised polynomial with roots V. The coefficient of x^{q^i} in f is the determinant of the $(k \times k)$ -minor obtained by deleting the top row and the column containing x^{q^i} .

For
$$a \in F^{\times}$$
 and $B = (b_1, \dots, b_t) \in F^t$, define

$$f_{a,B} = a^q x + b_1 x^q + \dots + b_t x^{q^t} + a x^{q^{t+1}}.$$

Furthermore, define

$$\mathcal{B}_a = \{ \ker f_{a,B} \mid B \in F^t \}.$$

Theorem (DRH 2023+)

The set $\{\mathscr{B}_a \mid a \in F^{\times}\}$ is an $LS(t, t + 1, F)_q$ for any $t \ge 1$ and any prime power q.

Let $B, C \in F^t$. Then

$$f_{a,B} - f_{a,C} = (b_1 - c_1)x^q + \dots + (b_t - c_t)x^{q^t}$$

= g^q ,

for some linearised polynomial g with q-degree t - 1.

- The GCD of $f_{a,B}$ and $f_{a,C}$ divides g.
- ker g has dimension at most t 1.

Thus, any pair of distinct elements of \mathscr{B}_a intersect in at most a (t - 1)-space.

Question

Can a similar construction produce an $LS(t, k, F)_q$ for all t, k with 0 < t < k?

Enjoy the excursion!