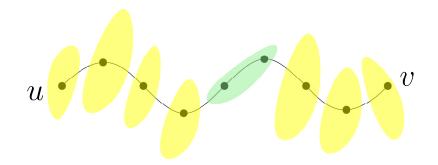
Powers of planar graphs, product structure, and blocking partitions

Marc Distel, Robert Hickingbotham, Michal Seweryn, David R. Wood

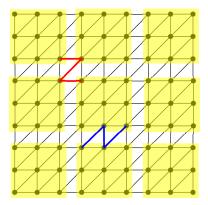
arXiv:2308.06995

An ℓ -blocking partition of a graph G with width at most w is a partition of V(G) into connected sets of size at most w such that every path of length greater than ℓ in G contains at least two vertices in one part

An ℓ -blocking partition of a graph G with width at most w is a partition of V(G) into connected sets of size at most w such that every path of length greater than ℓ in G contains at least two vertices in one part



An ℓ -blocking partition of a graph G with width at most w is a partition of V(G) into connected sets of size at most w such that every path of length greater than ℓ in G contains at least two vertices in one part



3-blocking partition of width 9

Blocking Partitions and Maximum Degree

Question: For a graph class \mathcal{G} , does there exists an $\ell \in \mathbb{N}$ and a function f such that every graph $G \in \mathcal{G}$ has an ℓ -blocking partition of width at most $f(\Delta(G))$?

Blocking Partitions and Maximum Degree

Question: For a graph class \mathcal{G} , does there exists an $\ell \in \mathbb{N}$ and a function f such that every graph $G \in \mathcal{G}$ has an ℓ -blocking partition of width at most $f(\Delta(G))$?

Not true for the class of all graphs!

Blocking Partitions and Maximum Degree

Question: For a graph class \mathcal{G} , does there exists an $\ell \in \mathbb{N}$ and a function f such that every graph $G \in \mathcal{G}$ has an ℓ -blocking partition of width at most $f(\Delta(G))$?

Not true for the class of all graphs!

Proposition There are no constants $\ell, w \in \mathbb{N}$ such that every 4-regular graph *G* has an ℓ -blocking partition of width at most *w*

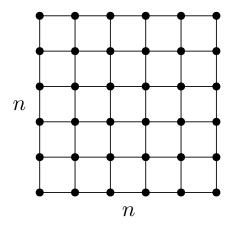
Planar Graphs

Planar Graphs

A graph is $\ensuremath{\mathsf{planar}}$ if it has a drawing in the plane such that no two edges cross

Planar Graphs

A graph is $\ensuremath{\mathsf{planar}}$ if it has a drawing in the plane such that no two edges cross



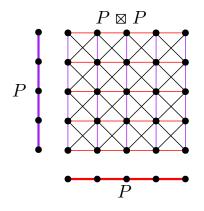
Main Result

Main Result

Theorem [Distel, H., Seweryn, Wood '23] There is a function f such that every planar graph G with maximum degree Δ has a 222-blocking partition with width at most $f(\Delta)$

Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar *G*, there is a graph *H* of treewidth at most 8 and a path *P* such that *G* is a subgraph of $H \boxtimes P$

Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar *G*, there is a graph *H* of treewidth at most 8 and a path *P* such that *G* is a subgraph of $H \boxtimes P$



Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar *G*, there is a graph *H* of treewidth at most 8 and a path *P* such that *G* is a subgraph of $H \boxtimes P$

Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar *G*, there exists a graph *H* of treewidth at most 3 and a path *P* such that *G* is a subgraph of $H \boxtimes P \boxtimes K_3$

Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar G, there is a graph H of treewidth at most 8 and a path P such that G is a subgraph of $H \boxtimes P$

Theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '20] For every planar *G*, there exists a graph *H* of treewidth at most 3 and a path *P* such that *G* is a subgraph of $H \boxtimes P \boxtimes K_3$

Note that $tw(H) \leq (3+1) * 3 - 1 = 11$

Applications of Graph Product Structure Theory

Applications of Graph Product Structure Theory

Resolved important open problems

- queue-number
- nonrepetitive colourings
- centred colourings
- labelling schemes
- adjacency labelling schemes
- twin-width
- clustered colouring

[DJMMUW '20]

- [DEJWW '20]
 - [DFMS '20]
 - [BGP '20]
- [DEGJMM '20]
- [BHLK '22, BKW '22]
 - [DEMW '23]

Graph Product Structure Theory

Other graph classes with product structure includes

Graph Product Structure Theory

Other graph classes with product structure includes

- bounded pathwidth
- bounded treewidth
- bounded Euler genus
- apex-minor-free graphs
- map graphs
- fan-planar graphs
- fan-bundle planar graphs
- k-planar graphs
- powers of planar graphs

[DHJMMW '23] [CCDGHHHITTW '23, ISW '22, DHHJLMMRW '24] [DJMMUW '20, DHHW '22] [DJMMUW '20] [DMW '23] [HW '21] [HW '21] [DMW '23] [DMW '23, HW '21]

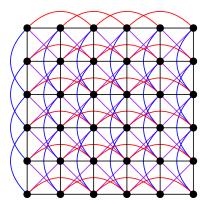
Powers of Planar Graphs

Powers of Planar Graphs

For a graph G, the k-th power G^k of G is the graph G^k where $V(G^k) := V(G)$ and $uv \in E(G^k)$ if and only if $dist_G(u, v) \leq k$

Powers of Planar Graphs

For a graph G, the k-th power G^k of G is the graph G^k where $V(G^k) := V(G)$ and $uv \in E(G^k)$ if and only if $dist_G(u, v) \leq k$



Square of the $n \times n$ grid

Product Structure for Powers of Planar Graphs

Theorem

[Dujmović, Morin, Wood '23]

For every $k \in \mathbb{N}$, for every planar graph G with maximum degree Δ , G^k is contained in $H \boxtimes P \boxtimes K_{O(k^4 \Delta^k)}$, for some graph H of treewidth $O(k^3)$ and some path P

Product Structure for Powers of Planar Graphs

Theorem

[Dujmović, Morin, Wood '23]

For every $k \in \mathbb{N}$, for every planar graph G with maximum degree Δ , G^k is contained in $H \boxtimes P \boxtimes K_{O(k^4 \Delta^k)}$, for some graph H of treewidth $O(k^3)$ and some path P

Question

[Ossona De Mendez '21]

Is there a function f and a universal constant C such that for every planar G with maximum degree Δ , G^k is contained in $H \boxtimes P \boxtimes K_{f(k,\Delta)}$ for some graph H with treewidth at most C?

Results

Results

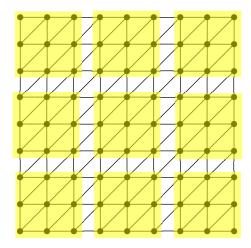
Theorem [Distel, H., Seweryn, Wood '23] There is a function f such that every planar graph G with maximum degree Δ , the graph G^k is contained in $H \boxtimes P \boxtimes K_{f(k,\Delta)}$ for some graph H with tw(H) $\leq 963\,922\,179$

Proof Sketch: Blocking Partition

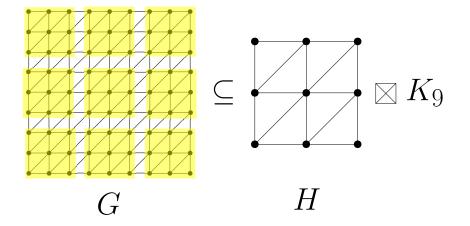
An ℓ -blocking partition of a graph G with width at most w is a partition of V(G) into connected sets of size at most w such that every path of length greater than ℓ in G contains at least two vertices in one part

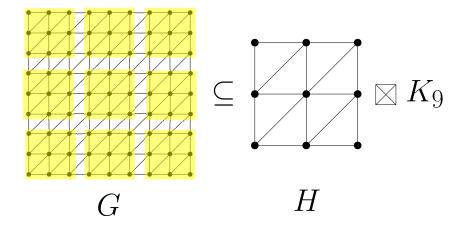
Theorem [Distel, H., Seweryn, Wood '23] There is a function f such that every planar graph G with maximum degree Δ has a 222-blocking partition with width at most $f(\Delta)$ Proof Idea for Powers of Planar Graphs

Proof Idea for Powers of Planar Graphs



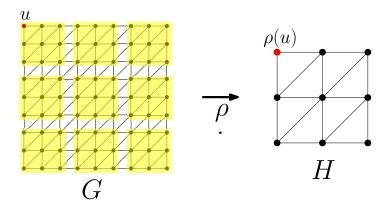
3-blocking partition of width 9



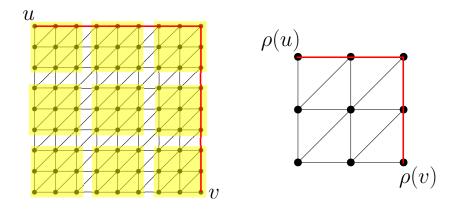


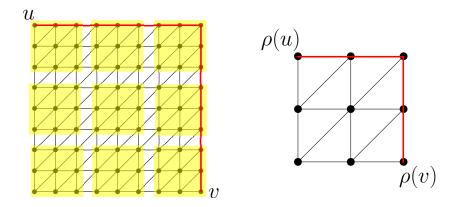
Observation *H* is a minor of *G* where $\Delta(H)$ is bounded by a function of $\Delta(G)$

Let $\rho \colon V(G) \to V(H)$ be the map that corresponds to the blocking partition



Let $\rho \colon V(G) \to V(H)$ be the map that corresponds to the blocking partition





Observation For every $u, v \in V(G)$, if $dist_G(u, v) \ge 223$ then $dist_H(\rho(u), \rho(v)) < dist_G(u, v)$

Lemma [Distel, H., Seweryn, Wood '23] For $\ell = 222$, there exists functions f and g, such that, for every $k \in \mathbb{N}$ and planar graph G,

$$G^k \subseteq H^\ell oxtimes K_{f((\Delta(G),k))}$$

for some planar graph H with $\Delta(H) \leqslant g(\Delta(G), k)$

Lemma [Distel, H., Seweryn, Wood '23] For $\ell = 222$, there exists functions f and g, such that, for every $k \in \mathbb{N}$ and planar graph G,

$$G^k \subseteq H^\ell oxtimes K_{f((\Delta(G),k))}$$

for some planar graph H with $\Delta(H) \leqslant g(\Delta(G), k)$

Theorem [Distel, H., Seweryn, Wood '23] There is a function f such that every planar graph G with maximum degree Δ , the graph G^k is contained in $H \boxtimes P \boxtimes K_{f(k,\Delta)}$ for some graph H with tw(H) $\leq 963 922 179$

Open Problems

Open Problems

Open Problem

Does every proper minor-closed class admit blocking partition?

Open Problems

Open Problem

Does every proper minor-closed class admit blocking partition?

Open Problem Are there other applications of blocking partitions?