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Blocking Partitions and Maximum Degree

Question: For a graph class G, does there exists an / € N and a
function f such that every graph G € G has an /-blocking partition
of width at most f(A(G))?

Not true for the class of all graphs!

Proposition There are no constants ¢, w € N such that every 4-
regular graph G has an /-blocking partition of width at most w
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Theorem [Distel, H., Seweryn, Wood '23|
There is a function f such that every planar graph G with maximum
degree A has a 222-blocking partition with width at most f(A)
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Planar Graph Product Structure Theorem

Theorem [Dujmovi¢, Joret, Micek, Morin, Ueckerdt, Wood "20]
For every planar G, there is a graph H of treewidth at most 8 and a
path P such that G is a subgraph of H X P

Theorem [Dujmovi¢, Joret, Micek, Morin, Ueckerdt, Wood '20]
For every planar G, there exists a graph H of treewidth at most 3
and a path P such that G is a subgraph of HX P X K3

Note that tw(H) < (3+1)x3—-1=11
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Applications of Graph Product Structure Theory

Resolved important open problems

queue-number
nonrepetitive colourings
centred colourings

labelling schemes

adjacency labelling schemes
twin-width

clustered colouring
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Graph Product Structure Theory

Other graph classes with product structure includes

@ bounded pathwidth
bounded treewidth

bounded Euler genus

apex-minor-free graphs

map graphs

fan-planar graphs

e fan-bundle planar graphs
@ k-planar graphs

@ powers of planar graphs
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Square of the n x n grid
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Product Structure for Powers of Planar Graphs

Theorem

For every k € N, for every planar graph G with maximum degree A,
G* is contained in HX P X Kok nky, for some graph H of treewidth
O(k®) and some path P

Question

Is there a function f and a universal constant C such that for every
planar G with maximum degree A, G* is contained in HX PX Krk,n)
for some graph H with treewidth at most C?
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Theorem

There is a function f such that every planar graph G with maximum
degree A, the graph G is contained in HXI P X Kf(x,a) for some
graph H with tw(H) < 963922179




Proof Sketch: Blocking Partition

An /-blocking partition of a graph G with width at most w is a partition
of V(G) into connected sets of size at most w such that every path of
length greater than ¢ in G contains at least two vertices in one part

Theorem

There is a function f such that every planar graph G with maximum
degree A has a 222-blocking partition with width at most f(A)
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3-blocking partition of width 9
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Proof for Graph Powers

N
@
=

G H

Observation H is a minor of G where A(H) is bounded by a function
of A(G)




Proof for Graph Powers

Let p: V(G) — V(H) be the map that corresponds to the blocking
partition
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Proof for Graph Powers

u

(%

Observation For every u, v € V(G), if distg(u, v) > 223 then

disty(p(u), p(v)) < distg(u, v)
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Lemma [Distel, H., Seweryn, Wood '23|
For ¢ = 222, there exists functions f and g, such that, for every
k € N and planar graph G,

G* C H' M Kr((a(6).0)

for some planar graph H with A(H) < g(A(G), k)




Proof for Graph Powers

Lemma
For ¢ = 222, there exists functions f and g, such that, for every
k € N and planar graph G,

G* € H' B Kr((a(c).x)

for some planar graph H with A(H) < g(A(G), k)

Theorem

There is a function f such that every planar graph G with maximum
degree A, the graph G* is contained in HX P X Kt (k,n) for some
graph H with tw(H) < 963922179
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Open Problem
Does every proper minor-closed class admit blocking partition?




Open Problems

Open Problem
Does every proper minor-closed class admit blocking partition?

Open Problem
Are there other applications of blocking partitions?




