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INTRODUCTION



Definition

An FEulerian orientation is an orientation of the edges of a graph such
that in-degree equals out-degree for each vertex.

A graph admits an Eulerian orientations if and only if all degrees are
even. However, counting such orientations is not easy!

EO(G) denotes the number of Eulerian orientations in a graph G.



Connection to statistical physics

[Pauling, 1935]: the hydrogen atoms in water ice are
expected to remain disordered even at absolute zero.
He introduced "two-near, two-far" ice rule.

EO(G) is equivalent to the crucial partition function o - v d
in the ice-type models (ferroelectricity and spin ice). “.\\\ -
For planar graphs it reduces to the six-vertex model. p'{

[Lieb, 1967] determined the asymptotics for the square ice:

lim EO(Ln)» = 23 ~ 1.540.

n—oo
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The asymptotics for the 3D cubic ice is a big open question in the area.
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Assign orientation randomly for each edge. Let X; denote the event that
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Pauling’s estimate

Assign orientation randomly for each edge. Let X; denote the event that

n
vertex i is "balanced". Then, EQ(G) = 2/E(G)IPr [ N Xj) .
j=1

Let's pretend that they are
independent!

? n n d:
EO(G) ~ lE(G)| H Pr(X;) = 2|s}c;)| H (d-;2).
jo1 Y

j=1

You are being naive,
Linus Pauling!




Regular tournaments

Theorem 1 (McKay, 1990)

For odd n — oo, we have EO(K,) ~ (ﬂ); (2”1);("_1) .

e ™n

5
For n = 5, Theorem 1 gives = 22.5. Pauling’s estimate is (%) ~ 7.6.

~

Asymptotically, Pauling’s estimate is also not correct:

n

1
n(n—1) n — ]. n n(n—1) 2n_1e4("_1)
2772 ~ 27 2

3(n—1) Jiw(n —1)

~ EO(Kp) 2im~ze~an" L,



ANALYTICAL APPROACH



Counting with integrals

First, observe

eo(k) = [+ T (2 +%).

Jj<k



Counting with integrals

First, observe

eo(k) = [+ T (2 +%).

Jj<k

Using the Cauchy integral theorem, we get

et H( o) deede

Setting contours to be unit circles, we get

/ / H cos(6; — 6,)d6.

Tj<k

EO(K,) =




Asymptotics of the integral

EO(K,) = 2"‘"51’7r—"/ / [ cos(6; — 6x)do.

<k

If all ; are approximately equal, we expand

H cos(0; — Ox) ~ exp (—; Z(Oj —6)% — % Z(Oj - Hk)4) .

i<k i<k i<k
Diagonalising the quadratic form, [McKay, 1990] shows

n—1 n+1

T ™ 27 5
/ . / H cos(6; — 0,)dO ~ niize_l/{

2
i<k n 2




Extension to general graphs

EO(G) = 2|E(G)|7r—"/ / [T cos(6; — 6i)d6.

T jkeG
SlE(G)] (2) (n—1)/2 Eefz(xt),

~ 4/det’(L) \T™

where X; is a truncated singular Gaussian with density prop. to e~ 2x"Lx,
0TLO := > (6; — 6k)*,
jkeG
K(0) ;= —L > (6 — 0k)*.

JjkEG

From the Matrix Tree Theorem, we know that det’(L) is the number of
spanning trees of G, which we denote by t(G).



Two ideas, one additional assumption

Idea 1. McKay's integral estimate is equivalent to

FeP(X0)  gER(X0) o, gER(X).

We can compute Ef,(X) without diagonalising the matrix.
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short edge-disjoint paths from 1 to 2.



Two ideas, one additional assumption
Idea 1. McKay's integral estimate is equivalent to
Eefz(x,) ~ e]Efz(Xt) ~ eIEfz(X).
We can compute Ef,(X) without diagonalising the matrix.
Idea 2. When |0; — 03] is large we need a lot of pairs j, k such that
| cos(6; — k)| < 1,

so the contribution of these 0 to the integral is negligible. We can use
short edge-disjoint paths from 1 to 2.

Everything works out if h(G) > ~yn for some fixed ~y, where

74
h(G) := min m
[Vi<n/2 | V|



A result from my PhD thesis

Theorem 2 (Isaev, Isaeva, 2013)

Suppose h(G) > yn and all degrees are even, then as n — oo

20E(@)] , 9\ (n—1)/2 1 2
EO(G) = —=< ( — exp [ —= 141 .
(@) VE(G) <7r> p( 43»%@ <dj K dk) )

e For G = K,,, Theorem 2 reduced to Theorem 1 (McKay, 1990).

e h(G) > «n holds for asymptotically almost all dense graphs.

o In [Isaev, Iyer, McKay, 2020], we further extend Theorem 2 for
graphs such that h(G) > A, where A > n'/2t< is the maximal
degree of G.



CUMULANT EXPANSION



Can we achieve a better precision?

EO(G) = 2/E@)z—n / / I] cos(6; — 6x)de.

—T jkeG
(n—1)/2
= (1 O(n—¢ 21E(G))| 2 E i (Xt)
(140 272 (2) (X,
M
m(0) :=> c Y (6 — k)%

=2  jkeG
where ¢y are the coefficients of expansion of log cos x around x = 0,
(=41 — 4)Ba

2t 20(20)!

We also employ cumulant expansion

oo r

t
log Ee!W = Z Fn,(W).

r=1



Cumulant tail bound

Good news: k(fm(Xt)) ~ kr(fm(X)) for any fixed r (or slowly growing).
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Good news: k(fm(Xt)) ~ kr(fm(X)) for any fixed r (or slowly growing).
Bad news: series y 02, %n,(fM(X)) diverge.
Motivation:

o Edgeworth expansion for U-statistics }; , h(Xj, Xk).

@ Cluster expansion and perturbation expansion (physics).

We proved a new bound on the tail of cumulant expansion for f, provided
Dy (f) decreases sufficiently fast wrt to the size of V C {1,..., n}.

Dy (f) := sup |9}/ [f](x)],
x,y
V . v v
where By = Byl ce Byk and

6§[f](x) = f(x) - f(xh cees Xji—1s Yjs Xjt1ye - Xn)-



New formula for Eulerian orientations

Theorem 3 (Isaev, McKay, Zhang, 2023)

Let A > log® n and h(G) > v A for some fixed v > 0. Let ¢ > 0 be a

constant and M := | — €187 | Then asn — oo
log A—4loglogn

r=1

n—1 M
EO(G) = f'/% (2) 7 exp (Zﬁﬁr(fm(x)) + O(n—C)) :

. . : . . . _1,T
where X is a singular Gaussian with density proportional to e 2% L¥,




Good precision for regular tournaments

For odd n — oo, we have

EO(K,) = (g)l/ (2n+1)(n 1)/2 exp 141 R

™n 4n 24n3
5981 22937
+ 120n4 *+ o 60"5 + 28"6 o 336n7 + 240n8

00031 , 1825000 , 4344847 —12
+ T80n° T+ Geonto T Dganit + O(n77)

For example, EO(K11) = 48251508480.

o(n—1) 4.7058280 X 101° | 2.5 x 10—2 o(n~7) 4.8251420 x 10'° | 1.8 x 10—°
0o(n—3) 4.8140033 o(n—%) 4.8251464 x 10%° | 9.2 x 10~7
o(n—3) 4.8239598 x 10'° | 2.5 x 10™4 o(n—?) 4.8251486 x 10° | 4.7 x 1077

X
X x 1073
X X
o(n—*%) 4.8250171 x 10'° | 2.8 x 105 O(n—1% | 4.8251496 x 101° | 2.6 x 10~7
X X
X X

10%° | 2.3

10—°
10—6

10'° | 6.7 O(n—) | 4.8251501 x 10%° | 1.5 x 10~7
O(n—12) | 4.8251504 x 10%° | 9.3 x 10—8

o(n—%) 4.8251187

drop term ‘ value ‘ rel. err. H drop term ‘ value ‘ rel. err.
O(n—%) | 4.8251341

10'° | 3.5



RESIDUAL ENTROPY ESTIMATES



Pauling is right for random graphs!

The following quantity is important for ice-type models:
p(G) := %Iog EO(G).

Pauling’s estimate gives

Pauling(G) := Zlog ( /2> — 272:': 9 log 2.
i=1 dj

Theorem 4 (Isaev, McKay, Zhang)

If A% = o(n) or A/§ = O(1) then
Pr (p(G) ~ PauIing(G)> >1— e UM,

where G is a random graph with degrees di, ..., d,.




Correction to Fauling's estimate
For a d—regular graph G, we have
Paulin =10 (o] .

Under the assumptions of Theorem 3, we have

pr(G) = —% log t(G) + glog2 — 5 log 7 + cumulants.



Correction to Pauling's estimate
For a d-regular graph G, we have
Pauling(G) = log ( d > — 9og2.
d/2 2
Under the assumptions of Theorem 3, we have

pr(G) = —i log t(G) + glog2 — 5 log 7 + cumulants.

dea: | p(G) + 5 Iog t(G) depends less on the structure of G.

We introduce the following correction to Pauling’s estimate:
pA(G) := Pauling(G) + %Td - % log t(G)

where 74 = log % is the typical value of % log t(G).



Square lattice L,

Lieb's square ice constant is lim,_ o EO(L,,)l/" = 8%. Thus,

p(L,) = log <8f> ~ 0.4315.
Pauling’s estimate gives
Pauling(L,) = log 1.5 ~ 0.4055.

From [Glasser, Wu, 2005] we know that

% log t(L,) = % Z S"'(j#
i>1

We also have 74 = Iog . Then, our estimate gives

p(G) = Pauling(L,) + 1 — 2> % ~~ 0.4306.
i>1



Triangular lattice T,

Baxter's constant is lim,_,oo EQ(T,)Y/" = 37‘@ Thus,
p(T») = log (#) ~~ 0.9548.
Pauling’s estimate gives

Pauling(T,) = log 2.5 =~ 0.9163.

From [Glasser, Wu, 2005] we know that

1 — 4 sin(jm/3)
Liog t(T,) Z—jz .

s
i>1

5 . .
We also have 75 = log 2%. Then, our estimate gives

p(Ta) = Pauling(T,)) + 175 — 2~ =002/ ~ 0.9542.
i1



3D cubic lattice C,

The asymptotics is an open question. We computed

p(Ci2s) € [0.94108,094116],  p(Cais) € [0.9342, 0.9351].

Pauling's estimate gives

Pauling(C,) = log 2.5 ~ 0.916.

From [Rosengren, 1987], we know that
2 log 7(Cs) = 1.673.
We also have 15 = log %. Then, our estimate gives

A(Cn) = Pauling(C,) 4 76 — =27 =~ 0.925.



Hypercube Qg on n = 29 vertices

We computed

p(Qs) = 0.955,  p(Qs) ~ 1.480.

Pauling's estimate gives

Pauling(Qs) =~ 0.916, Pauling(Qs) ~ 1.476.
From [Bernardi, 2012], we know that

d
£(Qa) = L ] (2000
i=1

5 7 . .
We also have 15 = log 2%, T3 = log 4%. Then, our estimate gives

p(Q6) = 0.948,  p(Qs) ~ 1.489.



THANK YOU FOR LISTENING!
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