

Mikhail Isaev (Monash University)

joint work with Brendan D. McKay (ANU) and Rui-Ray Zhang (Universitat Pompeu Fabra)

45th ACC, The University of Western Australia, December 15, 2023

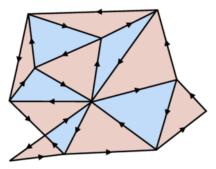
Introduction

- 2 Analytical approach (some not-very-old results)
- Oumulant expansion (arXiv:2309.15473)
- Residual entropy estimates (brand-new stuff)

INTRODUCTION

Definition

An *Eulerian orientation* is an orientation of the edges of a graph such that in-degree equals out-degree for each vertex.



A graph admits an Eulerian orientations if and only if all degrees are even. However, counting such orientations is not easy!

EO(G) denotes the number of Eulerian orientations in a graph G.

[Pauling, 1935]: the hydrogen atoms in water ice are expected to remain disordered even at absolute zero. He introduced **"two-near, two-far" ice rule**.

EO(*G***)** is equivalent to the crucial partition function in the **ice-type models** (ferroelectricity and spin ice). For planar graphs it reduces to the **six-vertex model**.

[Lieb, 1967] determined the asymptotics for the square ice:

$$\lim_{n\to\infty}\mathsf{EO}(L_n)^{\frac{1}{n}}=\frac{8\sqrt{3}}{9}\approx 1.540.$$

[Pauling, 1935]: the hydrogen atoms in water ice are expected to remain disordered even at absolute zero. He introduced **"two-near, two-far" ice rule**.

EO(*G***)** is equivalent to the crucial partition function in the **ice-type models** (ferroelectricity and spin ice). For planar graphs it reduces to the **six-vertex model**.

[Lieb, 1967] determined the asymptotics for the square ice:

$$\lim_{n\to\infty}\mathsf{EO}(L_n)^{\frac{1}{n}}=\frac{8\sqrt{3}}{9}\approx 1.540.$$

The asymptotics for the 3D cubic ice is a big open question in the area.

Pauling's estimate

Assign orientation randomly for each edge. Let X_i denote the event that vertex i is "balanced". Then, $EO(G) = 2^{|E(G)|} Pr\left(\bigcap_{j=1}^{n} X_j\right)$.

Pauling's estimate

Assign orientation randomly for each edge. Let X_i denote the event that vertex *i* is "balanced". Then, $EO(G) = 2^{|E(G)|} Pr\left(\bigcap_{i=1}^{n} X_i\right)$.

Let's pretend that they are independent!

$$\mathsf{EO}(G) \stackrel{?}{\approx} 2^{|\mathcal{E}(G)|} \prod_{j=1}^{n} \mathsf{Pr}(X_j) = \frac{1}{2^{|\mathcal{E}(G)|}} \prod_{j=1}^{n} \binom{d_j}{d_j/2}.$$

Pauling's estimate

Assign orientation randomly for each edge. Let X_i denote the event that vertex *i* is "balanced". Then, $EO(G) = 2^{|E(G)|} Pr\left(\bigcap_{i=1}^{n} X_i\right)$.

Let's pretend that they are independent!

$$\mathsf{EO}(G) \stackrel{?}{\approx} 2^{|\mathcal{E}(G)|} \prod_{j=1}^{n} \mathsf{Pr}\left(X_{j}\right) = \frac{1}{2^{|\mathcal{E}(G)|}} \prod_{j=1}^{n} \binom{d_{j}}{d_{j}/2}.$$

You are being naive, Linus Pauling! Theorem 1 (McKay, 1990)

For odd
$$n \to \infty$$
, we have $EO(K_n) \sim \left(\frac{n}{e}\right)^{\frac{1}{2}} \left(\frac{2^{n+1}}{\pi n}\right)^{\frac{1}{2}(n-1)}$

For
$$n = 5$$
, Theorem 1 gives ≈ 22.5 . Pauling's estimate is $\left(\frac{3}{2}\right)^5 \approx 7.6$.

Asymptotically, Pauling's estimate is also not correct:

$$2^{-\frac{n(n-1)}{2}} {\binom{n-1}{\frac{1}{2}(n-1)}}^n \sim 2^{-\frac{n(n-1)}{2}} \left(\frac{2^{n-1}e^{\frac{1}{4(n-1)}}}{\sqrt{\frac{1}{2}\pi(n-1)}}\right)^n \sim \mathsf{EO}(K_n) 2^{\frac{1}{2}}\pi^{-\frac{1}{2}}e^{-\frac{3}{4}}n^{-1}.$$

ANALYTICAL APPROACH

Counting with integrals

First, observe

$$\mathsf{EO}(\mathcal{K}_n) = [z_1^0 \cdots z_n^0] \prod_{j < k} \left(\frac{z_j}{z_k} + \frac{z_k}{z_j} \right).$$

Counting with integrals

First, observe

$$\mathsf{EO}(K_n) = [z_1^0 \cdots z_n^0] \prod_{j < k} \left(\frac{z_j}{z_k} + \frac{z_k}{z_j} \right).$$

Using the Cauchy integral theorem, we get

$$\mathsf{EO}(\mathcal{K}_n) = \frac{1}{(2\pi i)^n} \oint \cdots \oint \prod_{j < k} \left(\frac{z_j}{z_k} + \frac{z_k}{z_j} \right) dz_1 \dots dz_n.$$

Setting contours to be unit circles, we get

$$\mathsf{EO}(K_n) = 2^{\frac{n(n-1)}{2}} \pi^{-n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \prod_{j < k} \cos(\theta_j - \theta_k) d\theta.$$

Asymptotics of the integral

$$\mathsf{EO}(K_n) = 2^{\frac{n(n-1)}{2}} \pi^{-n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \prod_{j < k} \cos(\theta_j - \theta_k) d\theta.$$

If all θ_j are approximately equal, we expand

$$\prod_{j < k} \cos(\theta_j - \theta_k) \sim \exp\left(-\frac{1}{2} \sum_{j < k} (\theta_j - \theta_k)^2 - \frac{1}{12} \sum_{j < k} (\theta_j - \theta_k)^4\right).$$

Diagonalising the quadratic form, [McKay, 1990] shows

$$\int_{-\pi}^{\pi}\cdots\int_{-\pi}^{\pi}\prod_{j< k}\cos(\theta_j-\theta_k)d\theta\sim\frac{2^{\frac{n-1}{2}}\pi^{\frac{n+1}{2}}}{n^{\frac{n-2}{2}}}e^{-1/2}.$$

Extension to general graphs

$$\mathsf{EO}(G) = 2^{|\mathcal{E}(G)|} \pi^{-n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \prod_{jk \in G} \cos(\theta_j - \theta_k) d\theta.$$
$$\sim \frac{2^{|\mathcal{E}(G)|}}{\sqrt{\det'(L)}} \left(\frac{2}{\pi}\right)^{(n-1)/2} \mathbb{E} e^{f_2(X_t)},$$

where X_t is a truncated singular Gaussian with density prop. to $e^{-\frac{1}{2}x^T L x}$,

$$egin{aligned} & heta^{T} L heta &:= \sum_{jk \in G} (heta_{j} - heta_{k})^{2}, \ & f_{2}(heta) &:= -rac{1}{12} \sum_{jk \in G} (heta_{j} - heta_{k})^{4}. \end{aligned}$$

From the Matrix Tree Theorem, we know that det'(L) is the number of spanning trees of G, which we denote by t(G).

Two ideas, one additional assumption

Idea 1. McKay's integral estimate is equivalent to $\mathbb{E}e^{f_2(X_t)}\sim e^{\mathbb{E}f_2(X_t)}\sim e^{\mathbb{E}f_2(X)}.$

We can compute $\mathbb{E}f_2(X)$ without diagonalising the matrix.

Two ideas, one additional assumption

Idea 1. McKay's integral estimate is equivalent to $\mathbb{E}e^{f_2(X_t)}\sim e^{\mathbb{E}f_2(X_t)}\sim e^{\mathbb{E}f_2(X)}.$

We can compute $\mathbb{E}f_2(X)$ without diagonalising the matrix.

Idea 2. When $|\theta_1 - \theta_2|$ is large we need a lot of pairs $\boldsymbol{j}, \boldsymbol{k}$ such that

$$|\cos(\theta_j - \theta_k)| < 1,$$

so the contribution of these θ to the integral is negligible. We can use short edge-disjoint paths from 1 to 2.

Two ideas, one additional assumption

Idea 1. McKay's integral estimate is equivalent to $\mathbb{E}e^{f_2(X_t)}\sim e^{\mathbb{E}f_2(X_t)}\sim e^{\mathbb{E}f_2(X)}.$

We can compute $\mathbb{E}f_2(X)$ without diagonalising the matrix.

Idea 2. When $|\theta_1 - \theta_2|$ is large we need a lot of pairs $\boldsymbol{j}, \boldsymbol{k}$ such that

$$|\cos(\theta_j - \theta_k)| < 1,$$

so the contribution of these θ to the integral is negligible. We can use short edge-disjoint paths from 1 to 2.

Everything works out if $h(G) \geqslant \gamma n$ for some fixed γ , where

$$h(G) := \min_{|V| \leq n/2} \frac{|\partial_G(V)|}{|V|}.$$

Theorem 2 (Isaev, Isaeva, 2013)

Suppose $h(G) \geqslant \gamma n$ and all degrees are even, then as $n \to \infty$

$${
m EO}(G) = rac{2^{|E(G)|}}{\sqrt{t(G)}} \left(rac{2}{\pi}
ight)^{(n-1)/2} \exp\left(-rac{1}{4}\sum_{jk\in G}\left(rac{1}{d_j}+rac{1}{d_k}
ight)^2
ight).$$

- For $G = K_n$, Theorem 2 reduced to Theorem 1 (McKay, 1990).
- $h(G) \ge \gamma n$ holds for asymptotically almost all dense graphs.
- In [Isaev, Iyer, McKay, 2020], we further extend Theorem 2 for graphs such that $h(G) \ge \gamma \Delta$, where $\Delta \ge n^{1/2+\varepsilon}$ is the maximal degree of G.

CUMULANT EXPANSION

Can we achieve a better precision?

$$\begin{split} \mathsf{EO}(G) &= 2^{|\mathcal{E}(G)|} \pi^{-n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} \prod_{jk \in G} \cos(\theta_j - \theta_k) d\theta. \\ &= (1 + O(n^{-c})) \frac{2^{|\mathcal{E}(G)||}}{\sqrt{t(G)}} \left(\frac{2}{\pi}\right)^{(n-1)/2} \mathbb{E} e^{f_M(X_t)}, \\ f_M(\theta) &:= \sum_{\ell=2}^{M} c_{2\ell} \sum_{jk \in G} (\theta_j - \theta_k)^{2\ell}. \end{split}$$

where $c_{2\ell}$ are the coefficients of expansion of $\log \cos x$ around x = 0,

$$c_{2\ell} := \frac{(-4)^{\ell}(1-4^{\ell})B_{2\ell}}{2\ell(2\ell)!}.$$

We also employ *cumulant expansion*

$$\log \mathbb{E} e^{tW} = \sum_{r=1}^{\infty} \frac{t^r}{r!} \kappa_r(W).$$

Good news: $\kappa(f_M(X_t)) \sim \kappa_r(f_M(X))$ for any fixed r (or slowly growing).

Good news: $\kappa(f_M(X_t)) \sim \kappa_r(f_M(X))$ for any fixed r (or slowly growing).

Bad news: series $\sum_{r=1}^{\infty} \frac{1}{r!} \kappa_r(f_M(X))$ diverge.

Good news: $\kappa(f_M(X_t)) \sim \kappa_r(f_M(X))$ for any fixed r (or slowly growing). Bad news: series $\sum_{r=1}^{\infty} \frac{1}{r!} \kappa_r(f_M(X))$ diverge.

Motivation:

- Edgeworth expansion for **U**-statistics $\sum_{j < k} h(X_j, X_k)$.
- Cluster expansion and perturbation expansion (physics).

Good news: $\kappa(f_M(X_t)) \sim \kappa_r(f_M(X))$ for any fixed r (or slowly growing). Bad news: series $\sum_{r=1}^{\infty} \frac{1}{r!} \kappa_r(f_M(X))$ diverge.

Motivation:

- Edgeworth expansion for **U**-statistics $\sum_{j < k} h(X_j, X_k)$.
- Cluster expansion and perturbation expansion (physics).

We proved a new bound on the tail of cumulant expansion for f, provided $D_V(f)$ decreases sufficiently fast wrt to the size of $V \subseteq \{1, \ldots, n\}$.

$$D_V(f) := \sup_{x,y} |\partial_y^V[f](x)|,$$

where $\partial_y^V := \partial_y^{v_1} \cdots \partial_y^{v_k}$ and
 $\partial_y^j[f](x) := f(x) - f(x_1, \dots, x_{j-1}, y_j, x_{j+1}, \dots x_n).$

Theorem 3 (Isaev, McKay, Zhang, 2023)

Let $\Delta \gg \log^8 n$ and $h(G) \ge \gamma \Delta$ for some fixed $\gamma > 0$. Let c > 0 be a constant and $M := \left\lceil \frac{c \log n}{\log \Delta - 4 \log \log n} \right\rceil$. Then, as $n \to \infty$

$$\mathsf{EO}(G) = \frac{2^{|\mathcal{E}(G)|}}{\sqrt{t(G)}} \left(\frac{2}{\pi}\right)^{\frac{n-1}{2}} \exp\left(\sum_{r=1}^{M} \frac{1}{r!} \kappa_r \left(f_M(X)\right) + O(n^{-c})\right),$$

where **X** is a singular Gaussian with density proportional to $e^{-\frac{1}{2}x^T L x}$

Good precision for regular tournaments

Corollary

For odd $\pmb{n}
ightarrow \infty$, we have

$$\mathsf{EO}(\mathcal{K}_n) = \left(\frac{n}{e}\right)^{1/2} \left(\frac{2^{n+1}}{\pi n}\right)^{(n-1)/2} \exp\left(\frac{1}{4n} + \frac{1}{4n^2} + \frac{7}{24n^3} + \frac{37}{120n^4} + \frac{31}{60n^5} + \frac{81}{28n^6} + \frac{5981}{336n^7} + \frac{22937}{240n^8} + \frac{90031}{180n^9} + \frac{1825009}{660n^{10}} + \frac{4344847}{264n^{11}} + O(n^{-12})\right).$$

For example, $EO(K_{11}) = 48251508480$.

drop term	value	rel. err.	drop term	value	rel. err.
$O(n^{-1})$	4.7058280×10^{10}	2.5×10^{-2}	$O(n^{-7})$	4.8251420×10^{10}	1.8×10^{-6}
$O(n^{-2})$	4.8140033×10^{10}	2.3×10^{-3}	$O(n^{-8})$	4.8251464×10^{10}	9.2×10^{-7}
$O(n^{-3})$	4.8239598×10^{10}	2.5×10^{-4}	$O(n^{-9})$	4.8251486×10^{10}	4.7×10^{-7}
$O(n^{-4})$	4.8250171×10^{10}	2.8×10^{-5}	$O(n^{-10})$	4.8251496×10^{10}	2.6×10^{-7}
$O(n^{-5})$	4.8251187×10^{10}	$6.7 imes 10^{-6}$	$O(n^{-11})$	4.8251501×10^{10}	1.5×10^{-7}
$O(n^{-6})$	4.8251341×10^{10}	3.5×10^{-6}	$O(n^{-12})$	4.8251504×10^{10}	$9.3 imes 10^{-8}$

RESIDUAL ENTROPY ESTIMATES

Pauling is right for random graphs!

The following quantity is important for ice-type models:

$$\rho(G) := \frac{1}{n} \log \mathrm{EO}(G).$$

Pauling's estimate gives

$$\operatorname{Pauling}(G) := \frac{1}{n} \sum_{j=1}^{n} \log \binom{d_j}{d_j/2} - \frac{\sum_{j=1}^{n} d_j}{2n} \log 2.$$

Theorem 4 (Isaev, McKay, Zhang)

If $\Delta^2 = o(n)$ or $\Delta/\delta = O(1)$ then

$$\mathsf{Pr}\left(
ho({m{G}})\sim\mathsf{Pauling}({m{G}})
ight)\geqslant 1-e^{-\Omega({m{n}})},$$

where **G** is a random graph with degrees d_1, \ldots, d_n .

Correction to Pauling's estimate

For a d-regular graph G, we have

Pauling(G) = log
$$\binom{d}{d/2} - \frac{d}{2} \log 2$$
.

Under the assumptions of Theorem 3, we have

$$\rho(\mathbf{G}) \approx -\frac{1}{2n} \log t(\mathbf{G}) + \frac{d}{2} \log 2 - \frac{n}{2} \log \frac{\pi}{2} + \text{cumulants.}$$

Correction to Pauling's estimate

For a d-regular graph G, we have

Pauling(G) = log
$$\binom{d}{d/2} - \frac{d}{2} \log 2$$
.

Under the assumptions of Theorem 3, we have

$$\rho(\mathbf{G}) \approx -\frac{1}{2n} \log t(\mathbf{G}) + \frac{d}{2} \log 2 - \frac{n}{2} \log \frac{\pi}{2} + \text{cumulants.}$$

Idea: $\rho(G) + \frac{1}{2n} \log t(G)$ depends less on the structure of G.

We introduce the following correction to Pauling's estimate:

$$\hat{\rho}(G) := \operatorname{Pauling}(G) + \frac{1}{2}\tau_d - \frac{1}{2n}\log t(G)$$

where $\tau_d = \log \frac{(d-1)^{d-1}}{(d^2-2d)^{d/2-1}}$ is the typical value of $\frac{1}{n} \log t(G)$.

Square lattice *L_n*

Lieb's square ice constant is $\lim_{n\to\infty} EO(L_n)^{1/n} = \frac{8\sqrt{3}}{q}$. Thus,

$$\rho(\boldsymbol{L}_n) = \log\left(\frac{8\sqrt{3}}{9}\right) \approx 0.4315.$$

Pauling's estimate gives

 $Pauling(L_n) = \log 1.5 \approx 0.4055.$

From [Glasser, Wu, 2005] we know that

$$\frac{1}{n}\log t(L_n)=\frac{4}{\pi}\sum_{j\geq 1}\frac{\sin(j\pi/2)}{j^2}.$$

We also have $\tau_4 = \log \frac{27}{8}$. Then, our estimate gives

$$\hat{\rho}(G) = \text{Pauling}(L_n) + \frac{1}{2}\tau_4 - \frac{2}{\pi}\sum_{j\geq 1}\frac{\sin(j\pi/2)}{j^2} \approx 0.4306.$$

Triangular lattice **T**_n

Baxter's constant is $\lim_{n\to\infty} EO(T_n)^{1/n} = \frac{3\sqrt{3}}{2}$. Thus,

$$\rho(\mathbf{T}_n) = \log\left(\frac{3\sqrt{3}}{2}\right) \approx 0.9548.$$

Pauling's estimate gives

$$Pauling(T_n) = \log 2.5 \approx 0.9163.$$

From [Glasser, Wu, 2005] we know that

$$\frac{1}{n}\log t(T_n)=\frac{4}{\pi}\sum_{j\geq 1}\frac{\sin(j\pi/3)}{j^2}.$$

We also have $\tau_6 = \log \frac{5^5}{24^2}$. Then, our estimate gives

$$\hat{\rho}(\boldsymbol{T}_n) = \operatorname{Pauling}(\boldsymbol{T}_n) + \frac{1}{2}\tau_6 - \frac{2}{\pi}\sum_{j\geq 1}\frac{\sin(j\pi/3)}{j^2} \approx 0.9542.$$

3D cubic lattice C_n

The asymptotics is an open question. We computed

 $\rho(C_{125}) \in [0.94108, 094116], \quad \rho(C_{216}) \in [0.9342, 0.9351].$

Pauling's estimate gives

$$\mathsf{Pauling}(\mathcal{C}_n) = \log 2.5 \approx 0.916.$$

From [Rosengren, 1987], we know that

$$\frac{1}{n}\log \tau(C_n) \approx 1.673.$$

We also have $au_6 = \log rac{5^5}{24^2}.$ Then, our estimate gives

$$\hat{\rho}(\boldsymbol{C}_n) = \operatorname{Pauling}(\boldsymbol{C}_n) + \frac{1}{2}\tau_6 - \frac{1.673}{2} \approx 0.925.$$

Hypercube Q_d on $n = 2^d$ vertices

We computed

$$\rho(\mathbf{Q}_6) \approx 0.955, \quad \rho(\mathbf{Q}_8) \approx 1.489.$$

Pauling's estimate gives

Pauling(
$$Q_6$$
) \approx 0.916,

Pauling(Q_8) \approx 1.476.

From [Bernardi, 2012], we know that

$$t(Q_d) = \frac{1}{n} \prod_{i=1}^d (2i)^{\binom{d}{i}}.$$

We also have $\tau_6 = \log \frac{5^5}{24^2}$, $\tau_8 = \log \frac{7^7}{48^3}$. Then, our estimate gives $\hat{\rho}(\boldsymbol{Q}_6) \approx 0.948$, $\hat{\rho}(\boldsymbol{Q}_8) \approx 1.489$.

THANK YOU FOR LISTENING!