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Introduction



De�nition

An Eulerian orientation is an orientation of the edges of a graph such
that in-degree equals out-degree for each vertex.

A graph admits an Eulerian orientations if and only if all degrees are
even. However, counting such orientations is not easy!

EO(G) denotes the number of Eulerian orientations in a graph G.



Connection to statistical physics

[Pauling, 1935]: the hydrogen atoms in water ice are
expected to remain disordered even at absolute zero.
He introduced "two-near, two-far" ice rule.

EO(G) is equivalent to the crucial partition function
in the ice-type models (ferroelectricity and spin ice).
For planar graphs it reduces to the six-vertex model.

[Lieb, 1967] determined the asymptotics for the square ice:

lim
n→∞

EO(Ln)
1
n = 8

√
3

9
≈ 1.540.

The asymptotics for the 3D cubic ice is a big open question in the area.
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Pauling’s estimate

Assign orientation randomly for each edge. Let Xi denote the event that

vertex i is "balanced". Then, EO(G) = 2|E(G)| Pr

(
n⋂

j=1
Xj

)
.

EO(G)
?
≈ 2|E(G)|

n∏
j=1

Pr
(
Xj
)
= 1

2|E(G)|

n∏
j=1

(
dj

dj/2

)
.
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You are being naive,
Linus Pauling!



Regular tournaments

Theorem 1 (McKay, 1990)

For odd n → ∞, we have EO(Kn) ∼
(

n
e

) 1
2
(

2n+1

πn

) 1
2 (n−1)

.

For n = 5, Theorem 1 gives ≈ 22.5. Pauling’s estimate is
(

3
2

)5
≈ 7.6.

Asymptotically, Pauling’s estimate is also not correct:

2−
n(n−1)

2

(
n − 1

1
2(n − 1)

)n
∼ 2−

n(n−1)
2

 2n−1e
1

4(n−1)√
1
2π(n − 1)

n

∼ EO(Kn) 2
1
2π− 1

2 e− 3
4 n−1.



Analytical approach



Counting with integrals

First, observe

EO(Kn) = [z0
1 · · · z0

n]
∏
j<k

(
zj

zk
+

zk

zj

)
.

Using the Cauchy integral theorem, we get

EO(Kn) =
1

(2πi)n

∮
· · ·
∮ ∏

j<k

(
zj

zk
+

zk

zj

)
dz1 . . . dzn.

Setting contours to be unit circles, we get

EO(Kn) = 2
n(n−1)

2 π−n
∫ π

−π
· · ·
∫ π

−π

∏
j<k

cos(θj − θk)dθ.
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Asymptotics of the integral

EO(Kn) = 2
n(n−1)

2 π−n
∫ π

−π
· · ·
∫ π

−π

∏
j<k

cos(θj − θk)dθ.

If all θj are approximately equal, we expand

∏
j<k

cos(θj − θk) ∼ exp

−1
2

∑
j<k

(θj − θk)
2 − 1

12

∑
j<k

(θj − θk)
4

 .

Diagonalising the quadratic form, [McKay, 1990] shows∫ π

−π
· · ·
∫ π

−π

∏
j<k

cos(θj − θk)dθ ∼
2

n−1
2 π

n+1
2

n
n−2

2

e−1/2.



Extension to general graphs

EO(G) = 2|E(G)|π−n
∫ π

−π
· · ·
∫ π

−π

∏
jk∈G

cos(θj − θk)dθ.

∼ 2|E(G)|√
det′(L)

(
2
π

)(n−1)/2
Eef2(X t),

where Xt is a truncated singular Gaussian with density prop. to e− 1
2xTLx ,

θTLθ :=
∑
jk∈G

(θj − θk)
2,

f2(θ) := − 1
12

∑
jk∈G

(θj − θk)
4.

From the Matrix Tree Theorem, we know that det′(L) is the number of
spanning trees of G , which we denote by t(G).



Two ideas, one additional assumption

Idea 1. McKay’s integral estimate is equivalent to

Eef2(X t) ∼ eEf2(X t) ∼ eEf2(X ).

We can compute Ef2(X ) without diagonalising the matrix.

Idea 2. When |θ1 − θ2| is large we need a lot of pairs j , k such that

| cos(θj − θk)| < 1,

so the contribution of these θ to the integral is negligible. We can use
short edge-disjoint paths from 1 to 2.

Everything works out if h(G) ⩾ γn for some fixed γ, where

h(G) := min
|V |⩽n/2

|∂G (V )|
|V |

.
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A result from my PhD thesis

Theorem 2 (Isaev, Isaeva, 2013)

Suppose h(G) ⩾ γn and all degrees are even, then as n → ∞

EO(G) =
2|E(G)|√

t(G)

( 2
π

)(n−1)/2
exp

−
1
4

∑
jk∈G

(
1
dj

+ 1
dk

)2
 .

For G = Kn, Theorem 2 reduced to Theorem 1 (McKay, 1990).

h(G) ⩾ γn holds for asymptotically almost all dense graphs.

In [Isaev, Iyer, McKay, 2020], we further extend Theorem 2 for
graphs such that h(G) ⩾ γ∆, where ∆ ⩾ n1/2+ε is the maximal
degree of G.



Cumulant expansion



Can we achieve a better precision?

EO(G) = 2|E(G)|π−n
∫ π

−π
· · ·
∫ π

−π

∏
jk∈G

cos(θj − θk)dθ.

= (1 + O(n−c)) 2|E(G))|√
t(G)

(
2
π

)(n−1)/2
EefM(X t),

fM(θ) :=
M∑
ℓ=2

c2ℓ
∑
jk∈G

(θj − θk)
2ℓ.

where c2ℓ are the coefficients of expansion of log cos x around x = 0,

c2ℓ :=
(−4)ℓ(1 − 4ℓ)B2ℓ

2ℓ(2ℓ)!
.

We also employ cumulant expansion

log EetW =
∞∑
r=1

tr

r !
κr(W ).



Cumulant tail bound

Good news: κ(fM(Xt)) ∼ κr(fM(X )) for any fixed r (or slowly growing).

Bad news: series
∑∞

r=1
1
r !κr(fM(X )) diverge.

Motivation:
Edgeworth expansion for U-statistics

∑
j<k h(Xj ,Xk).

Cluster expansion and perturbation expansion (physics).

We proved a new bound on the tail of cumulant expansion for f , provided
DV (f ) decreases sufficiently fast wrt to the size of V ⊆ {1, . . . , n}.

DV (f ) := sup
x,y

|∂V
y [f ](x)|,

where ∂V
y := ∂v1

y · · · ∂vk
y and

∂j
y [f ](x) := f (x) − f (x1, . . . , xj−1, yj , xj+1, . . . xn).
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New formula for Eulerian orientations

Theorem 3 (Isaev, McKay, Zhang, 2023)

Let ∆ ≫ log8 n and h(G) ⩾ γ∆ for some fixed γ > 0. Let c > 0 be a
constant and M :=

⌈
c log n

log∆−4 log log n

⌉
. Then, as n → ∞

EO(G) = 2|E(G)|√
t(G)

(
2
π

) n−1
2

exp

( M∑
r=1

1
r !
κr (fM(X )) + O(n−c)

)
,

where X is a singular Gaussian with density proportional to e− 1
2xTLx .



Good precision for regular tournaments

Corollary
For odd n → ∞, we have

EO(Kn) =
(

n
e

)1/2 (
2n+1

πn

)(n−1)/2
exp

(
1
4n

+ 1
4n2 + 7

24n3

+ 37
120n4 + 31

60n5 + 81
28n6 + 5981

336n7 + 22937
240n8

+ 90031
180n9 + 1825009

660n10 + 4344847
264n11 + O(n−12)

)
.

For example, EO(K11) = 48251508480.

drop term value rel. err. drop term value rel. err.
O(n−1) 4.7058280 × 1010 2.5 × 10−2 O(n−7) 4.8251420 × 1010 1.8 × 10−6

O(n−2) 4.8140033 × 1010 2.3 × 10−3 O(n−8) 4.8251464 × 1010 9.2 × 10−7

O(n−3) 4.8239598 × 1010 2.5 × 10−4 O(n−9) 4.8251486 × 1010 4.7 × 10−7

O(n−4) 4.8250171 × 1010 2.8 × 10−5 O(n−10) 4.8251496 × 1010 2.6 × 10−7

O(n−5) 4.8251187 × 1010 6.7 × 10−6 O(n−11) 4.8251501 × 1010 1.5 × 10−7

O(n−6) 4.8251341 × 1010 3.5 × 10−6 O(n−12) 4.8251504 × 1010 9.3 × 10−8



Residual entropy estimates



Pauling is right for random graphs!

The following quantity is important for ice-type models:

ρ(G) := 1
n
log EO(G).

Pauling’s estimate gives

Pauling(G) :=
1
n

n∑
j=1

log

(
dj

dj/2

)
−
∑n

j=1 dj

2n
log 2.

Theorem 4 (Isaev, McKay, Zhang)

If ∆2 = o(n) or ∆/δ = O(1) then

Pr
(
ρ(G) ∼ Pauling(G)

)
⩾ 1 − e−Ω(n),

where G is a random graph with degrees d1, . . . , dn.



Correction to Pauling’s estimate

For a d -regular graph G , we have

Pauling(G) = log

(
d

d/2

)
− d

2
log 2.

Under the assumptions of Theorem 3, we have

ρ(G) ≈ − 1
2n

log t(G) + d
2
log 2 − n

2
log π

2
+ cumulants.

Idea: ρ(G) + 1
2n

log t(G) depends less on the structure of G .

We introduce the following correction to Pauling’s estimate:

ρ̂(G) := Pauling(G) + 1
2
τd − 1

2n
log t(G)

where τd = log (d−1)d−1

(d2−2d)d/2−1 is the typical value of 1
n
log t(G).
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Square lattice Ln

Lieb’s square ice constant is limn→∞ EO(Ln)1/n = 8
√

3
9

. Thus,

ρ(Ln) = log
(

8
√

3
9

)
≈ 0.4315.

Pauling’s estimate gives

Pauling(Ln) = log 1.5 ≈ 0.4055.

From [Glasser, Wu, 2005] we know that

1
n
log t(Ln) =

4
π

∑
j≥1

sin(jπ/2)
j2

.

We also have τ4 = log 27
8

. Then, our estimate gives

ρ̂(G) = Pauling(Ln) +
1
2
τ4 − 2

π

∑
j≥1

sin(jπ/2)
j2

≈ 0.4306.



Triangular lattice Tn

Baxter’s constant is limn→∞ EO(Tn)1/n = 3
√

3
2

. Thus,

ρ(Tn) = log
(

3
√

3
2

)
≈ 0.9548.

Pauling’s estimate gives

Pauling(Tn) = log 2.5 ≈ 0.9163.

From [Glasser, Wu, 2005] we know that

1
n
log t(Tn) =

4
π

∑
j≥1

sin(jπ/3)
j2

.

We also have τ6 = log 55

242 . Then, our estimate gives

ρ̂(Tn) = Pauling(Tn) +
1
2
τ6 − 2

π

∑
j≥1

sin(jπ/3)
j2

≈ 0.9542.



3D cubic lattice Cn

(C ) ∈ [0.94108, 094116], ρ(C ) ∈ [ . , 0. ].

Cn) = log 2.5 ≈ 0.916.

1
n
log τ (Cn) ≈ 1.673.

We also have τ6 = log 55

242 . Then, our estimate gives

ρ̂(Cn) = Pauling(Cn) +
1
2
τ6 − 1.673

2
≈ 0.925.

935193420216

Pauling(

125ρ

The asymptotics is an open question. We computed

Pauling’s estimate gives

From [Rosengren, 1987], we know that



Hypercube Qd on n = 2d vertices

ρ(Q6) ≈ 0.955, ρ(Q8) ≈ 1.489.

Pauling(Q6) ≈ 0.916, Pauling(Q8) ≈ 1.476.

t(Qd ) =
1
n

d∏
i=1

(2i)(
d
i ).

τ6 = log 55

242 , τ8 = log 77

483

ρ̂(Q6) ≈ 0.948, ρ̂(Q8) ≈ 1.489.

. Then, our estimate gives

We computed

Pauling’s estimate gives

From [Bernardi, 2012], we know that

We also have



Thank you for listening!


	Introduction
	Analytical approach (some not-very-old results)
	Cumulant expansion (arXiv:2309.15473)
	Residual entropy estimates (brand-new stuff)
	Analytical approach
	Cumulant expansion
	

