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Domination in Graphs

A thousand research papers related to domination have been 

published until now.
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By the result of Berg, we have

C. Berge, Theory of Graphs and its Applicationa, Methuen, London, 1962.
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Then, the union of all the dominating sets gives

𝛾 𝐺 ≤ 𝑠 𝐺 − ∆ ∆𝑠 𝐺 − 2𝑠 𝐺 + 3 .



The characterization of graphs achieving the equality

𝛾 𝐺 = 𝑠 𝐺 − ∆ ∆𝑠 𝐺 − 2𝑠 𝐺 + 3 .
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A graph                          when ∆= 3 and s=5
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