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For a graph G, a vertex subset D is a dominating set
if every vertex of G is either in D or adjacent to a
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The minimum cardinality of a dominating set is
called the domination number of G denoted by

(G).
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A vertex subset S is a safe set of G if , for a component H of
G-S and a component C of G[S], we have |V(H)]| < |V(C)]

whenever there is an edge joining vertices between H
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The minimum cardinality of a safe set of G is called
the safe number of G and is denoted by s(G).

s(G) =4



Domination in Graphs

The historical origin of study of dominating sets in graphs began in 1862
when De Jaenisch studied the problem of finding the minimum number of queens
that have to be placed on an n x n chessboard so that they dominate all the
cells in the board.

Photo from : www.quora.com/How many queens are required to cover every square in an 8*8 chessboard?



Domination in Graphs

The concept of the domination number of a graph was introduced by Claude
Berge in 1958 in his book on graph theory (the terminology used by him was
‘coefficient of external stability’).

Photo from: https://users.encs.concordia.ca/~chvatal/perfect/spgt.html



Domination in Graphs

In 1962, Oystien Ore in his book on graph theory, used the names *dominat-
ing set’and ‘domination number’.

Photo from: https://mathshistory.st-andrews.ac.uk/Biographies/Ore/



Domination in Graphs

In 1962, Oystien Ore in his book on graph theory, used the names *dominat-
ing set’and ‘domination number’.

A thousand research papers related to domination have been
published until now.

Photo from: https://mathshistory.st-andrews.ac.uk/Biographies/Ore/
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2016 Fujita, MacGillivray and Sakuma introduced the concept of safe set.

S. Fujita, G. MacGillivray, T. Sakuma, Safe set problem on graphs, Discrete
Applied Mathematics 215 (2016) 106-111.
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2016 Fujita, MacGillivray and Sakuma introduced the concept of safe set.

- The motivation concerned “Facility location Problem”, securing people in temporary safe living spaces
in case of emergency.

- the problem of seeking safe set with a given cardinality is NP-complete.

The problem has received much attention over the past 7 years, algorithm aspect in particular.

2018 f\gueda et al. provided an efficient algorithm for computing the safe number of unweighted graphs
with bounded treewidth.

Bapat et al. showed that computing the connected weighted safe number for stars and trees

is NP-hard.

Fujita and Furuya bounded connected safe number by the minimum value of the size summation
between any set and its largest component outside, they called it “integrity” of graphs.

2020 Ehard and Rautenbach showed a polynomial-time approximation scheme (PTAS) for
the connected safe number of vertex weighted trees

Hosteins introduced a mixed integer linear programing formulation for safe sets

P. Hosteins, A compact mixed integer linear formulation for safe set problems,
Optimization Letters 14 (2020) 2127-2148.



Safe Sets in Graphs

2016 Fujita, MacGillivray and Sakuma introduced the concept of safe set.
- The motivation concerned “Facility location Problem”, securing people in temporary safe living spaces

in case of emergency.
- the problem of seeking safe set with a given cardinality is NP-complete.

2017 Fujita and |, we met in combinatorics conference in Poland and started our collaboration ever since.
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Theorem 1 Let G be a graph with the maximum degree A. Then

f(A) < 5(G) < [1LEUpHY

A2 —2A—3+4+/(2A—A2+3)2+4(3A+7(G)) (A—2)

(A=) when

where f(A) = 1‘;—6 when A = 2 and f(A) =
A > 3.
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By studying variations of safe set and domination in the “connected” aspect, we show that

Theorem 2 Let G be a connected graph. Then

g(A) < 5.(@) < [2LGNS112

_ A—5+4/A2-2A+4(A-2)7.(G)
— 2(A—2)

where g(A) = w when A =2 and g(A) 2 when A > 3.

The upper bounds of both theorems are shown to be sharp. Further, we characterize all
eraphs satisfying the lower bound of each theorem.
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Theorem 1 Let G be a graph with the maximum degree A. Then

f(A) < 5(G) < [1LEUpHY

where f(A) = li‘_ﬁ when A = 2 and f(A) = .&?—2&—3+\/(2ﬁ—.2&(2—i%)22;+:1(3.&+7.(G))(.&—‘2) hen
A > 3.
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‘ <A+1
Upper bound

<A+1 |

~ V(G| < (A+ DID| = (A + 1)y(G)
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~ V(G| < (A+ DID| = (A + 1)y(G)

Since s(G) < [|V(G)]|/2],s(G) < [(A+ 1)y(G)/2]
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Some extremal graphs satisfying the equality s(G) = [(A + 1)y(G)/2] are

Ka+1 Ka+1



Lower bound
Theorem 1 Let G be a graph with the maximum degree A. Then

f(A) < 5(G) < [1LEUpHY

A2 —2A—3+4+/(2A—A2+3)2+4(3A+7(G)) (A—2)
2(A—2)

where f(A) = l"g—ﬁ when A = 2 and f(A) =
A > 3.
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Lower bound

Theorem 1 Let G be a graph with the maximum degree A. Then

f(8) < 5(G) < [HEFH

A > 3.

By Quadratic Formula, we would rather show that

v(G) < (s(G) — A)(As(G) — 2s(G) + 3).












By the observation, we have
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Because S Is a safe set, we have

H} B
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Now, each part of the graph has its own dominating set

D1 D? D5
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By the result of Berg, we have ‘Dl]‘ <|5;|—A

Dj

Df

2 t
D1 D11

i1 < AlS|-2)S;]

C. Berge, Theory of Graphs and its Applicationa, Methuen, London, 1962.




Then, the union of all the dominating sets gives

Y(G) < (s(G) — A)(As(G) — 2s(G) + 3).



The characterization of graphs achieving the equality

y(G) = (s(G) — A)(As(G) — 2s(G) + 3).



The class A; (A, s).

For given positive integers s > A, a graph H in this class has order s and contains a vertex
x of maximum degree A. Further, H has the following properties.

(a) v(H) =s5-A

(b) H — Ny|z| is independent,

(c) every vertex in Ny(x) is adjacent to at most one vertex in H — Ny x|,
(d) |V(H)— Nglz]| < A and

(e) H has at least one bad non-critical vertex or at least one non-critical vertex (this vertex
is not x by the characterization of graphs H satisfying v(H) = |V(H)| — A(H) which
we always have a y-set {x} U (V(G) — Ng|z]) containing a vertex of maximum degree
x).
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H e Ai(A, s)



The class G (A, s).

For given positive integers s > A > 2, a graph G in this class is constructed from a wounded
spider s(p, q) where s = 2p — ¢ + 1 with the maximum degree vertex x and from As — 2s + 2
distinct graphs from the class A;(A, s) by joining vertices between components as follows.

Let x,ay,...,ap—q,b1,....,0,_g,C1, ..., cq be defined by the definition of s(p,q).

(i) Forall 1 <i < p—gq, join a vertex a; to A —2 components F', F?, ..., Ff‘_g c A1(A,s) at
a non-critical vertex f}, f?, ..., ftfﬁ_2 respectively. Further, each of f/ is not maximum
degree vertex of F} forall 1 <j <A —2.

(i1) Foralll <i < p—q, join a vertex b; to A—1 components R}, R%, ..., Rf_] € A1(A,s)at a
1 ,.2 A—1
_i-:‘-u--u-

non-critical bad vertex r;, r T respectively. Further, each of r/ is not maximum

degree vertex of R‘f forall1<j3 <A —-1.



Further, when ¢ = 1,

(i12) join a vertex c¢; to A —1 components Hi, H?, ..., H‘lﬁ‘_1 e Ai (A, s) at a non-critical bad
vertex hi, h?, ..., h‘l’i“_l respectively. Further, each of h is not maximum degree vertex
of H forall 1 <j <A —1.

When ¢ > 2, for all 1 < i < ¢, join a vertex ¢; to A — 1 components H_},Hf, Hf‘_l S
A1 (A, s) at a vertex ht, h?, ..., hA—1 respectively, in such a way that :
1 [} 2
(2v) Each of h:g is not maximum degree vertex of Hf forall 1 <j <A -—1.
(v) At most one of these A — 1 vertices h}, h?, ..., hf_l is critical.
A—1

(vt) Thereexists 1 < i’ < ¢ such that ¢; is adjacent to all non-critical vertices hg,, h?,, ey b

(vit) There exists 1 <" < ¢ such that ¢;» is adjacent to all bad vertices h,g,,, hf”? hf.,_l.
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H e A (A, s) IO H e A (A, s)

H e Ai1(A,s) l. H e A (A, s)




HeA(ds) \ [o H e Ay(A, s)

H e Ai(A,s) lo H e Ai(A,s)

e HeA(As)
H e A (A, S)

e L, HEMA

He Ai(A)s) ‘ H e Ai(A,s)



The graph G satisfies the lower bound of Theorem 1
If and only If

G € Ql(A, S)
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Agraph G € G1(A,s) when A= 3 and s=5



By more or less similar arguments, we prove that

Theorem 2 Let G be a connected graph. Then

g(A) < 5.(@) < [2LGNS112

_ A—5+4/A2-2A+4(A-2)7.(G)

) 2 when A > 3.

where g(A) = % when A = 2 and g(A)

The upper bounds of both theorems are shown to be sharp. Further, we characterize all
eraphs satisfying the lower bound of each theorem.
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Lower bound

A graph G satisfies the lower bound of Theorem 2

If and only If

G € QQ(A, 8)



Agraph G € Go(A,s) when A= 3 and s=5
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