Designs in the generalised symmetric group

Lukas Klawuhn
Paderborn University

12 December 2023

Joint work with Kai-Uwe Schmidt

Introduction

Introduction

symmetry group S_{4}

Introduction

$$
\text { symmetry group } S_{4}
$$

real space:

Introduction

$$
\text { symmetry group } S_{4}
$$

real space:

- tetrahedron (simplex)

Introduction

symmetry group S_{4}

real space:

- tetrahedron (simplex)
- cube (hypercube)

Introduction

symmetry group S_{4}

real space:

- tetrahedron (simplex)
- cube (hypercube)
- octahedron (hyperoctahedron)

Regular polytopes

Regular polytopes

made up of vertices, edges, faces, cells, ...

Regular polytopes

made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags

Regular polytopes

made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags

Regular polytopes

made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

Transitivity in polytopes

(31)

Transitivity in polytopes

(31)

(22)

Transitivity in polytopes

(31)

(22)

(211)

Transitivity in polytopes

(31)

(22)

(211)

(13)

Transitivity in polytopes

(31)

(22)

(13)

(211)

(121)

Transitivity in polytopes

(31)

(22)

(13)

(211)

(121)

(112)

Transitivity in polytopes

(31)

(22)

(13)

(211)

(121)

(112)

(1111)

Transitivity in polytopes

λ-transitive set of symmetries \longleftrightarrow design in S_{n}
(31)

(22)

(13)

(211)

(121)

(112)

(1111)

Transitivity in polytopes

λ-transitive set of symmetries \longleftrightarrow design in S_{n}
(31)

(22)

(13)

(211)

(121)

(112)

(1111)

Transitive sets

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that $a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}$.

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that $a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}$.
t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that $a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}$.
t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that $a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}$.
t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

is constant.

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

is constant.
t-transitivity:

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

is constant.
t-transitivity: $\lambda=(n-t, 1, \ldots, 1)$

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

is constant.
t-transitivity: $\lambda=(n-t, 1, \ldots, 1)$
t-homogeneity:

Transitive sets

t-transitive subgroup Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct we find $y \in Y$ such that

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t} .
$$

t-transitive subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
a_{1} \stackrel{y}{\mapsto} b_{1}, \ldots, a_{t} \stackrel{y}{\mapsto} b_{t}
$$

is constant.
t-homogeneous subset Y :
For a_{1}, \ldots, a_{t} and b_{1}, \ldots, b_{t} distinct the number of $y \in Y$ with

$$
\left\{a_{1}, \ldots, a_{t}\right\} \stackrel{y}{\mapsto}\left\{b_{1}, \ldots, b_{t}\right\}
$$

is constant.
t-transitivity: $\lambda=(n-t, 1, \ldots, 1)$
t-homogeneity: $\lambda=(n-t, t)$

Association schemes

Association schemes

- Association scheme (X, R) : Finite set X and partition R of $X \times X$

Association schemes

- Association scheme (X, R) : Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme

Association schemes

- Association scheme (X, R) : Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme Classical block designs: Johnson scheme

Association schemes

- Association scheme (X, R) : Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme Classical block designs: Johnson scheme

Association schemes

- Association scheme (X, R) : Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme Classical block designs: Johnson scheme
\rightarrow unifiying framework to study codes and designs

Designs in association schemes

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$ T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$
T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$
- If $T=\{1, \ldots, t\}$, then T-designs in the \ldots

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$
T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$
- If $T=\{1, \ldots, t\}$, then T-designs in the \ldots
... Hamming scheme are orthogonal arrays

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$
T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$
- If $T=\{1, \ldots, t\}$, then T-designs in the \ldots
... Hamming scheme are orthogonal arrays
... Johnson scheme are combinatorial designs

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$
T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$
- If $T=\{1, \ldots, t\}$, then T-designs in the \ldots
... Hamming scheme are orthogonal arrays
... Johnson scheme are combinatorial designs

Designs in association schemes

- $Y \subseteq X:$ inner distribution $\left(a_{0}, a_{1}, \ldots\right)$ dual distribution $\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right)$
- D-code: $d \notin D \Longrightarrow a_{d}=0$
T-design: $t \in T \Longrightarrow a_{t}^{\prime}=0$
- If $T=\{1, \ldots, t\}$, then T-designs in the \ldots
... Hamming scheme are orthogonal arrays
... Johnson scheme are combinatorial designs

This motivates the present general definition [of T-designs], the 'conjecture' being that T-designs will often have interesting properties.

- Delsarte's thesis, 1973

Association schemes from groups

Conjugacy class scheme of a finite group G :

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$.

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$. Dual distribution of $Y \subseteq G$:

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$. Dual distribution of $Y \subseteq G$:

$$
a_{k}^{\prime}=\chi_{k}(1) \sum_{x, y \in Y} \chi_{k}\left(x^{-1} y\right)
$$

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$.

Dual distribution of $Y \subseteq G$:

$$
a_{k}^{\prime}=\chi_{k}(1) \sum_{x, y \in Y} \chi_{k}\left(x^{-1} y\right)
$$

Conjugacy class scheme of S_{n} :

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$.

Dual distribution of $Y \subseteq G$:

$$
a_{k}^{\prime}=\chi_{k}(1) \sum_{x, y \in Y} \chi_{k}\left(x^{-1} y\right)
$$

Conjugacy class scheme of S_{n} :

- $X=S_{n}$,

Association schemes from groups

Conjugacy class scheme of a finite group G :

- $X=G$,
- dual distribution indexed by irreducible characters $\chi_{1}, \ldots, \chi_{m}$.

Dual distribution of $Y \subseteq G$:

$$
a_{k}^{\prime}=\chi_{k}(1) \sum_{x, y \in Y} \chi_{k}\left(x^{-1} y\right)
$$

Conjugacy class scheme of S_{n} :

- $X=S_{n}$,
- irreducible characters indexed by partitions of n.

Designs in the symmetric group

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then: D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_{n}$ is t-homogeneous for $1 \leq t \leq n / 2$, then it is also ($t-1$)-homogeneous.

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.
Theorem [Livingstone, Wagner 1965]
If a subgroup $D \subseteq S_{n}$ is t-homogeneous for $1 \leq t \leq n / 2$, then it is also ($t-1$)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.
Theorem [Livingstone, Wagner 1965]
If a subgroup $D \subseteq S_{n}$ is t-homogeneous for $1 \leq t \leq n / 2$, then it is also ($t-1$)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

$$
(n-t, t)
$$

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.
Theorem [Livingstone, Wagner 1965]
If a subgroup $D \subseteq S_{n}$ is t-homogeneous for $1 \leq t \leq n / 2$, then it is also ($t-1$)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

$$
(n-t, t) \quad(n-t+1, t-1)
$$

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.
Theorem [Livingstone, Wagner 1965]
If a subgroup $D \subseteq S_{n}$ is t-homogeneous for $1 \leq t \leq n / 2$, then it is also ($t-1$)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

$$
(n-t, t) \unlhd(n-t+1, t-1) \quad \text { for } 1 \leq t \leq n / 2 \quad \square \unlhd \boxminus \square
$$

Other polytopes

Other polytopes

Other polytopes

$C_{2} \backslash S_{n}$

Other polytopes

Other polytopes

$C_{2} \backslash S_{n}$

(complex regular polytope)
$C_{r} \backslash S_{n}$

Transitivity in $C_{r}\left\langle S_{n}\right.$

Transitivity in $C_{r}<S_{n}$

Transitivity in C_{r} 2 S_{n}

Transitivity in C_{r} $2 S_{n}$

Transitivity in $C_{r}\left\langle S_{n}\right.$

Transitivity in C_{r} $2 S_{n}$

Transitivity in $C_{r}<S_{n}$

Transitivity in $C_{r}<S_{n}$

Transitivity in $C_{r}<S_{n}$

$(2,1)$

Transitivity in $C_{r}<S_{n}$

$(2,1)$

$(21,0)$

Transitivity in $C_{r}\left\langle S_{n}\right.$

$(2,1)$

$(21,0)$

$(1,2)$

Transitivity in $C_{r}\left\langle S_{n}\right.$

$(2,1)$

$(1,2)$

$(21,0)$

Transitivity in $C_{r}\left\langle S_{n}\right.$

$(2,1)$

$(1,2)$

$(21,0)$

$(11,1)$

Transitivity in $C_{r}\left\langle S_{n}\right.$

$(2,1)$

$(1,2)$

$(21,0)$

$(11,1)$

Transitivity in C_{r} $2 S_{n}$

(λ, k)-transitive set of symmetries \longleftrightarrow design in $C_{r} \backslash S_{n}$
$(3,0)$

$(2,1)$

$(1,2)$

$(21,0)$

$(12,0)$

$(11,1)$

$(111,0)$

Algebraic characterisation

Algebraic characterisation

- Irreducible characters of $C_{r} 2 S_{n}$ indexed by r-partitions $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of n

Algebraic characterisation

- Irreducible characters of $C_{r} 2 S_{n}$ indexed by r-partitions $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of n
- Transitivity types indexed by (λ, k)

Algebraic characterisation

- Irreducible characters of $C_{r} 2 S_{n}$ indexed by r-partitions $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of n
- Transitivity types indexed by (λ, k)
- Need a relation \rightarrow that identifies which entries in the dual distribution are 0

Algebraic characterisation

- Irreducible characters of $C_{r} 2 S_{n}$ indexed by r-partitions $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of n
- Transitivity types indexed by (λ, k)
- Need a relation \rightarrow that identifies which entries in the dual distribution are 0
- Mayer 1975: Relation \rightarrow for Coxeter groups A, B, D

Algebraic characterisation

- Irreducible characters of $C_{r}<S_{n}$ indexed by r-partitions $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ of n
- Transitivity types indexed by (λ, k)
- Need a relation \rightarrow that identifies which entries in the dual distribution are 0
- Mayer 1975: Relation \rightarrow for Coxeter groups A, B, D
- Relation \rightarrow defined algorithmically

Characterisation of designs in C_{r} S S_{n}

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then: D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Characterisation of designs in C_{r} S S_{n}

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then: D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_{r}\left\langle S_{n}\right.$. Then:
D is (λ, k)-transitive $\Longleftrightarrow a_{\left(\alpha_{1}, \ldots, \alpha_{r}\right)}^{\prime}=0$ for all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq(n, \emptyset, \ldots, \emptyset)$ with

$$
(\lambda, k) \rightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Characterisation of designs in $C_{r} \backslash S_{n}$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then: D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_{r}\left\langle S_{n}\right.$. Then:
D is (λ, k)-transitive $\Longleftrightarrow a_{\left(\alpha_{1}, \ldots, \alpha_{r}\right)}^{\prime}=0$ for all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq(n, \emptyset, \ldots, \emptyset)$ with

$$
(\lambda, k) \rightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Theorem also works for any finite abelian group G instead of C_{r}

Characterisation of designs in $C_{r} \backslash S_{n}$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_{n}$. Then:
D is λ-transitive $\Longleftrightarrow a_{\mu}^{\prime}=0$ for all $\lambda \unlhd \mu \neq(n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_{r}\left\langle S_{n}\right.$. Then:
D is (λ, k)-transitive $\Longleftrightarrow a_{\left(\alpha_{1}, \ldots, \alpha_{r}\right)}^{\prime}=0$ for all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq(n, \emptyset, \ldots, \emptyset)$ with

$$
(\lambda, k) \rightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Theorem also works for any finite abelian group G instead of C_{r} Theorem also works for more general transitivity types

Comparing designs

Comparing designs

Theorem [Martin, Sagan 2006]
If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

$(2,1)$
$(1,2)$

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

$(1,2)$

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

$(1,2)$

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

$(1,2)$

Comparing designs

Theorem [Martin, Sagan 2006]

If $D \subseteq S_{n}$ is λ-transitive and $\lambda \unlhd \mu$, then D is also μ-transitive.

Theorem [K.,Schmidt 2023]

If $D \subseteq C_{r}\left\langle S_{n}\right.$ is (λ, k)-transitive, then D is also ($\mu, /$)-transitive if and only if

$$
k \leq I \text { and } \lambda \cup(k) \unlhd \mu \cup(I)
$$

$(1,2)$

Construction

Construction

Interpret C_{r} \ S_{n} as coloured permutations:

Construction

Interpret $C_{r} 2 S_{n}$ as coloured permutations:

1	2 3 2 2 1 2	3	4

Construction

Interpret $C_{r} \ S_{n}$ as coloured permutations:

1	2 3 2 2 1 2	3	4

λ-transitive set in S_{n}

Construction

Interpret $C_{r} 2 S_{n}$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

λ-transitive set in $S_{n}+$ orthogonal array

Construction

Interpret C_{r} \ S_{n} as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

Construction

Interpret $C_{r} \backslash S_{n}$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

- S_{n} : recursive construction by Martin and Sagan

Construction

Interpret $C_{r} \backslash S_{n}$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

- S_{n} : recursive construction by Martin and Sagan
- orthogonal arrays: existence by Kuperberg, Lovett and Peled

Thank you for your attention!

The relation \rightarrow

In C_{3} 乙 S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because
(4211)

(2)

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because
(4211)

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because
(4211)

2

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because
(4211)

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because

(2)

\square

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because
(4211)

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because

The relation \rightarrow

In C_{3} S_{10} we have $(4211,2) \rightarrow(3,211,3)$ because

The generalised symmetric group

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$\left.C_{3}\right)_{4}$:

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

C_{3}, $S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 3 | 4 |

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

C_{3} 亿 $S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 3 | 4 |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 |
| 2 | 1 | 4 | 3 |

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

C_{3} 亿 $S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 3 | 4 |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 |
| 2 | 1 | 4 | 3 |

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

C_{3} 亿 $S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 3 | 4 |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 |
| 2 | 1 | 4 | 3 |

The generalised symmetric group

$C_{r} \backslash S_{n} \cong C_{r}^{n} \rtimes S_{n}$

- 'coloured permutations'

$S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |

C_{3} 亿 $S_{4}:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 3 | 4 |\rightarrow| 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 |
| 2 | 1 | 4 | 3 |

Construction

Construction

λ-transitive set in S_{n}

Construction

λ-transitive set in $S_{n}+$ orthogonal array

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

\section*{| 1 | 2 | 3 |
| :--- | :--- | :--- |}

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

\section*{| 1 | 2 | 3 |
| :--- | :--- | :--- |}

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

(111)

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline
\end{array}
$$

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

(111)

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

(111)

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

(111)

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

1 2 3
1 2 3 2 3 1 3 1 2 2 1 3 3 2 1 1 3 2$+$$+$1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2 3 1 2

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

1	2	3

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

(111)

1	2	3				
1	2	3				
1	2	3				
1	2	3				
2	3	1	\quad	2	1	3
:---	:---	:---				
2	1	3				
2	1	3				
2	1	3				

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

1	2	3

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

(111)

$=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 1 | 2 | 3 |
| 1 | 2 | 3 |
| 2 | 3 | 1 |
| 2 | 3 | 1 |
| 2 | 3 | 1 |
| 2 | 3 | 1 |
| 3 | 1 | 2 |
| 2 | 1 | 3 |
| 2 | 1 | 3 |
| 2 | 1 | 3 |
| 2 | 1 | 3 |
| 3 | 2 | 1 |
| 3 | 2 | 1 |
| 3 | 2 | 1 |
| 3 | 2 | 1 |

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

Construction

λ-transitive set in $S_{n}+$ orthogonal array $=\underline{\lambda}$-transitive set in $C_{r} 2 S_{n}$

$(11,1)$

