Designs in the generalised symmetric group

Lukas Klawuhn

Paderborn University

12 December 2023

Joint work with Kai-Uwe Schmidt

symmetry group S_4

symmetry group S_4

real space:

symmetry group S_4

real space:

• tetrahedron (simplex)

symmetry group S_4

real space:

- tetrahedron (simplex)
- cube (hypercube)

symmetry group S_4

real space:

- tetrahedron (simplex)
- cube (hypercube)
- octahedron (hyperoctahedron)

made up of vertices, edges, faces, cells, ...

```
made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags
```

made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags

made up of vertices, edges, faces, cells, ...
... such that the symmetry group acts transitively on flags

 λ -transitive set of symmetries \longleftrightarrow design in S_n

 λ -transitive set of symmetries \longleftrightarrow design in S_n


```
t-transitive subgroup Y:
For a_1, \ldots, a_t and b_1, \ldots, b_t distinct
```

t-transitive subgroup Y: For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

is constant.

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

is constant.

t-transitivity:

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

is constant.

t-transitivity: $\lambda = (n - t, 1, \dots, 1)$

t-transitive subgroup Y:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

is constant.

t-transitivity: $\lambda = (n - t, 1, \dots, 1)$

t-homogeneity:

t-transitive subgroup *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct we find $y \in Y$ such that

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t.$$

t-transitive subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$a_1 \stackrel{y}{\mapsto} b_1, \ldots, a_t \stackrel{y}{\mapsto} b_t$$

is constant.

t-homogeneous subset *Y*:

For a_1, \ldots, a_t and b_1, \ldots, b_t distinct the number of $y \in Y$ with

$$\{a_1,\ldots,a_t\}\stackrel{y}{\mapsto}\{b_1,\ldots,b_t\}$$

is constant.

t-transitivity: $\lambda = (n - t, 1, \dots, 1)$

t-homogeneity: $\lambda = (n - t, t)$

• Association scheme (X, R): Finite set X and partition R of $X \times X$

- Association scheme (X, R): Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme

- Association scheme (X, R): Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme
 Classical block designs: Johnson scheme

- Association scheme (X, R): Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme
 Classical block designs: Johnson scheme
 :

- Association scheme (X, R): Finite set X and partition R of $X \times X$
- Classical codes: Hamming scheme
 Classical block designs: Johnson scheme
 :
 - . \rightarrow unifiying framework to study codes and designs

• $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$
- If $T = \{1, \dots, t\}$, then T-designs in the ...

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$
- • If $T=\{1,\ldots,t\}$, then T-designs in the \ldots ... Hamming scheme are orthogonal arrays

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$
- If $T = \{1, \ldots, t\}$, then T-designs in the \ldots
 - ... Hamming scheme are orthogonal arrays
 - ... Johnson scheme are combinatorial designs

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$
- If $T = \{1, \dots, t\}$, then T-designs in the \dots
 - ... Hamming scheme are orthogonal arrays
 - ... Johnson scheme are combinatorial designs
 - :

- $Y \subseteq X$: inner distribution $(a_0, a_1, ...)$ dual distribution $(a'_0, a'_1, ...)$
- *D*-code: $d \notin D \Longrightarrow a_d = 0$ *T*-design: $t \in T \Longrightarrow a'_t = 0$
- If $T = \{1, ..., t\}$, then T-designs in the ...
 ... Hamming scheme are orthogonal arrays
 ... Johnson scheme are combinatorial designs
 :

This motivates the present general definition [of T-designs], the 'conjecture' being that T-designs will often have interesting properties.

- Delsarte's thesis, 1973

Conjugacy class scheme of a finite group G:

Conjugacy class scheme of a finite group G:

$$\bullet X = G$$
,

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Dual distribution of $Y \subseteq G$:

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Dual distribution of $Y \subseteq G$:

$$a'_k = \chi_k(1) \sum_{x,y \in Y} \chi_k(x^{-1}y)$$

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Dual distribution of $Y \subseteq G$:

$$a'_k = \chi_k(1) \sum_{x,y \in Y} \chi_k(x^{-1}y)$$

Conjugacy class scheme of S_n :

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Dual distribution of $Y \subseteq G$:

$$a'_k = \chi_k(1) \sum_{x,y \in Y} \chi_k(x^{-1}y)$$

Conjugacy class scheme of S_n :

• $X = S_n$,

Conjugacy class scheme of a finite group G:

- $\bullet X = G$
- dual distribution indexed by irreducible characters χ_1, \ldots, χ_m .

Dual distribution of $Y \subseteq G$:

$$a'_k = \chi_k(1) \sum_{x,y \in Y} \chi_k(x^{-1}y)$$

Conjugacy class scheme of S_n :

- $X = S_n$,
- irreducible characters indexed by partitions of n.

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive \iff $a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive $\iff a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_n$ is t-homogeneous for $1 \le t \le n/2$, then it is also (t-1)-homogeneous.

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive \iff $a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_n$ is t-homogeneous for $1 \le t \le n/2$, then it is also (t-1)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \subseteq \mu$, then D is also μ -transitive.

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive \iff $a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_n$ is t-homogeneous for $1 \le t \le n/2$, then it is also (t-1)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \subseteq \mu$, then D is also μ -transitive.

$$(n-t,t)$$

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive $\iff a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_n$ is t-homogeneous for $1 \le t \le n/2$, then it is also (t-1)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \subseteq \mu$, then D is also μ -transitive.

$$(n-t,t)$$
 $(n-t+1,t-1)$

Designs in the symmetric group

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive \iff $a'_{\mu}=0$ for all $\lambda \trianglelefteq \mu \neq (n)$.

Theorem [Livingstone, Wagner 1965]

If a subgroup $D \subseteq S_n$ is t-homogeneous for $1 \le t \le n/2$, then it is also (t-1)-homogeneous.

Corollary [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

$$(n-t,t) \le (n-t+1,t-1)$$
 for $1 \le t \le n/2$

 (λ, k) -transitive set of symmetries \longleftrightarrow design in $C_r \wr S_n$

• Irreducible characters of $C_r \wr S_n$ indexed by r-partitions $(\alpha_1, \ldots, \alpha_r)$ of n

- Irreducible characters of $C_r \wr S_n$ indexed by r-partitions $(\alpha_1, \ldots, \alpha_r)$ of n
- Transitivity types indexed by (λ, k)

- Irreducible characters of $C_r \wr S_n$ indexed by r-partitions $(\alpha_1, \ldots, \alpha_r)$ of n
- Transitivity types indexed by (λ, k)
- ullet Need a relation \to that identifies which entries in the dual distribution are 0

- Irreducible characters of $C_r \wr S_n$ indexed by r-partitions $(\alpha_1, \ldots, \alpha_r)$ of n
- Transitivity types indexed by (λ, k)
- \bullet Need a relation \to that identifies which entries in the dual distribution are 0
- Mayer 1975: Relation \rightarrow for Coxeter groups A, B, D

- Irreducible characters of $C_r \wr S_n$ indexed by r-partitions $(\alpha_1, \ldots, \alpha_r)$ of n
- Transitivity types indexed by (λ, k)
- \bullet Need a relation \to that identifies which entries in the dual distribution are 0
- Mayer 1975: Relation \rightarrow for Coxeter groups A, B, D
- ullet Relation o defined algorithmically

Characterisation of designs in $C_r \wr S_n$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive \iff $a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Characterisation of designs in $C_r \wr S_n$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive $\iff a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_r \wr S_n$. Then:

$$D$$
 is (λ, k) -transitive $\iff a'_{(\alpha_1, \dots, \alpha_r)} = 0$ for all $(\alpha_1, \dots, \alpha_r) \neq (n, \emptyset, \dots, \emptyset)$ with

$$(\lambda, k) \rightarrow (\alpha_1, \ldots, \alpha_r).$$

Characterisation of designs in $C_r \wr S_n$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive $\iff a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_r \wr S_n$. Then:

$$D$$
 is (λ, k) -transitive $\iff a'_{(\alpha_1, \dots, \alpha_r)} = 0$ for all $(\alpha_1, \dots, \alpha_r) \neq (n, \emptyset, \dots, \emptyset)$ with

$$(\lambda, k) \rightarrow (\alpha_1, \ldots, \alpha_r).$$

Theorem also works for any finite abelian group G instead of C_r

Characterisation of designs in $C_r \wr S_n$

Theorem [Martin, Sagan 2006]

Let λ be a partition of n and $D \subseteq S_n$. Then:

D is λ -transitive $\iff a'_{\mu} = 0$ for all $\lambda \leq \mu \neq (n)$.

Theorem [K., Schmidt 2023]

Let $D \subseteq C_r \wr S_n$. Then:

$$D$$
 is (λ, k) -transitive $\iff a'_{(\alpha_1, \dots, \alpha_r)} = 0$ for all $(\alpha_1, \dots, \alpha_r) \neq (n, \emptyset, \dots, \emptyset)$ with

$$(\lambda, k) \rightarrow (\alpha_1, \ldots, \alpha_r).$$

Theorem also works for any finite abelian group G instead of C_r Theorem also works for more general transitivity types

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D\subseteq C_r\wr S_n$ is (λ,k) -transitive, then D is also (μ,l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D \subseteq C_r \wr S_n$ is (λ, k) -transitive, then D is also (μ, l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

(2,1)

(1, 2)

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D\subseteq C_r\wr S_n$ is (λ,k) -transitive, then D is also (μ,l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

(2,1)

(1,2)

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D\subseteq C_r\wr S_n$ is (λ,k) -transitive, then D is also (μ,l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

(2,1)

(1,2)

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D \subseteq C_r \wr S_n$ is (λ, k) -transitive, then D is also (μ, l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

(2,1)

(1, 2)

Theorem [Martin, Sagan 2006]

If $D \subseteq S_n$ is λ -transitive and $\lambda \leq \mu$, then D is also μ -transitive.

Theorem [K., Schmidt 2023]

If $D\subseteq C_r\wr S_n$ is (λ,k) -transitive, then D is also (μ,l) -transitive if and only if

$$k \leq I$$
 and $\lambda \cup (k) \leq \mu \cup (I)$.

 $(2,1) \longrightarrow (1,2)$

Interpret $C_r \wr S_n$ as coloured permutations:

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n + orthogonal array

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

ullet S_n : recursive construction by Martin and Sagan

Interpret $C_r \wr S_n$ as coloured permutations:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

- \bullet S_n : recursive construction by Martin and Sagan
- orthogonal arrays: existence by Kuperberg, Lovett and Peled

Thank you for your attention!

In $C_3 \wr S_{10}$ we have $(4211, 2) \to (3, 211, 3)$ because

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

(2)

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

0

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

0

1

2

In $C_3 \wr S_{10}$ we have $(4211,2) \rightarrow (3,211,3)$ because

0

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

In $C_3 \wr S_{10}$ we have $(4211,2) \rightarrow (3,211,3)$ because

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

In $C_3 \wr S_{10}$ we have $(4211,2) \rightarrow (3,211,3)$ because

In $C_3 \wr S_{10}$ we have (4211, 2) \rightarrow (3, 211, 3) because

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

• 'coloured permutations'

*S*₄:

1 2	3	4
-----	---	---

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

• 'coloured permutations'

 S_4 :

1	2	3	4

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

$$C_3 \wr S_4$$
:

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

$$S_4$$
: 1 2 3 4 \longrightarrow 2 1 4

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

$$S_4$$
:

$$C_3 \wr S_4$$
:

1	2	3	4
1	2	3	4
1	2	3	4

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

$$S_4$$
:

1	2	3	4

$$C_3 \wr S_4$$
:

1	2	3	4
1	2	3	4
1	2	3	4

The generalised symmetric group

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

• 'coloured permutations'

 S_4 : $\left|\begin{array}{c|c}1&2\end{array}\right|$

2 1 4 3

 $C_3 \wr S_4$:

1	2	3	4
1	2	3	4
1	2	3	4

 2
 1
 4
 3

 2
 1
 4
 3

 2
 1
 4
 3

The generalised symmetric group

$$C_r \wr S_n \cong C_r^n \rtimes S_n$$

• 'coloured permutations'

$$S_4$$
: $\begin{vmatrix} 1 & 2 \end{vmatrix}$

$$C_3 \wr S_4$$
:

1	2	3	4
1	2	3	4
1	2	3	4

 λ -transitive set in S_n

 λ -transitive set in S_n + orthogonal array

1	2	3
---	---	---

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

1	2	3
---	---	---

1	2	3
2	3	1
3	1	2
2	1	3
3	2	1
1	3	2

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

1	2	3			
1	2	3			
2	3	1			
3	1	2	1		
2	1	3	+		
3	2	1			
1	3	2			
			•		
1		`			

1	2	3
1	2	3
1	2	3
1	2	3

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

1	2	3	
1	2	3	
1	2	3	
1	2	3	
2	3	1	
2	3	1	
2	3	1	
2 2 2 2 3	3	1	
3	1	2	

2	1	3
2	1	3
2	1	3
2	1	3

1	2	3
1	2	3
1	2	3
1	2	3
2	3	1
2	3	1
2	3	1
2	3	1
3	1	2
3	1	2
3	1	2
3	1	2

2	1	3
2	1	3
2	1	3
2	1	3
3	2	1
3	2	1
3	2	1
3	2	1

1	2	3	
1	2	3	
1	2	3	
1	2	3	
2	3	1	
2	3	1	
2	3	1	
2	3	1	
3	1	2	
3	1	2	
3	1	2	
3	1	2	

2	1	3	
2	1	3	
2	1	3	
2	1	3	
3	2	1	
3 3	2	1	
3	2 2 2	1	
3	2	1	
1	3	2	
1	3	2	
1	3	2	
1	3	2	

 λ -transitive set in S_n + orthogonal array = $\underline{\lambda}$ -transitive set in $C_r \wr S_n$

1	2	3	
1	2	3	
1	2	3	
1	2 3 3	3	
2 2 2 2 3	3	1	
2	3	1	
2	3	1	
2	3	1	
3	1	2	
3	1	2 2 2	
3	1	2	
3	1	2	

2	1	3	
2	1	3	
2 2 2 3	1	3 3	
2	1	3	
3	2	1	
3	2 2 2 2 3	1	
3	2	1	
3	2	1	
1		2	
1	3	2	
1	3 3	2 2 2	
1	3	2	

(11, 1)