
Designs in the generalised symmetric group

Lukas Klawuhn

Paderborn University

12 December 2023

Joint work with Kai-Uwe Schmidt

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 1 / 16



Introduction

symmetry group S4

real space:

• tetrahedron (simplex)
• cube (hypercube)
• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Introduction

symmetry group S4

real space:

• tetrahedron (simplex)
• cube (hypercube)
• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Introduction

symmetry group S4

real space:

• tetrahedron (simplex)
• cube (hypercube)
• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Introduction

symmetry group S4

real space:
• tetrahedron (simplex)

• cube (hypercube)
• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Introduction

symmetry group S4

real space:
• tetrahedron (simplex)
• cube (hypercube)

• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Introduction

symmetry group S4

real space:
• tetrahedron (simplex)
• cube (hypercube)
• octahedron (hyperoctahedron)

Lukas Klawuhn (Paderborn University) Designs in Cr ≀ Sn 12 December 2023 2 / 16



Regular polytopes

made up of vertices, edges, faces, cells, . . .
. . . such that the symmetry group acts transitively on flags
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Transitivity in polytopes

(31)

(22)

(211)

(13)

(121) (112)

(1111)
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Transitivity in polytopes
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λ-transitive set of symmetries ←→ design in Sn
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Transitive sets

t-transitive subgroup Y :
For a1, . . . , at and b1, . . . , bt distinct we find y ∈ Y such that

a1
y7→ b1, . . . , at

y7→ bt .

t-transitive subset Y :
For a1, . . . , at and b1, . . . , bt distinct the number of y ∈ Y with

a1
y7→ b1, . . . , at

y7→ bt

is constant.
t-homogeneous subset Y :
For a1, . . . , at and b1, . . . , bt distinct the number of y ∈ Y with

{a1, . . . , at}
y7→ {b1, . . . , bt}

is constant.
t-transitivity: λ = (n − t, 1, . . . , 1)
t-homogeneity: λ = (n − t, t)
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Association schemes

• Association scheme (X , R): Finite set X and partition R of X × X
• Classical codes: Hamming scheme

Classical block designs: Johnson scheme
...
→ unifiying framework to study codes and designs
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Designs in association schemes

• Y ⊆ X : inner distribution (a0, a1, . . .)
dual distribution (a′

0, a′
1, . . .)

• D-code: d ̸∈ D =⇒ ad = 0
T -design: t ∈ T =⇒ a′

t = 0
• If T = {1, . . . , t}, then T -designs in the . . .

. . . Hamming scheme are orthogonal arrays

. . . Johnson scheme are combinatorial designs

...
This motivates the present general definition [of T -designs], the ’conjecture’
being that T -designs will often have interesting properties.

− Delsarte’s thesis, 1973
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Association schemes from groups

Conjugacy class scheme of a finite group G :

• X = G ,
• dual distribution indexed by irreducible characters χ1, . . . , χm.

Dual distribution of Y ⊆ G :

a′
k = χk(1)

∑
x ,y∈Y

χk(x−1y)

Conjugacy class scheme of Sn:
• X = Sn,
• irreducible characters indexed by partitions of n.
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Designs in the symmetric group

Theorem [Martin, Sagan 2006]
Let λ be a partition of n and D ⊆ Sn. Then:
D is λ-transitive ⇐⇒ a′

µ = 0 for all λ ⊴ µ ̸= (n).

Theorem [Livingstone, Wagner 1965]
If a subgroup D ⊆ Sn is t-homogeneous for 1 ≤ t ≤ n/2, then it is also
(t − 1)-homogeneous.

Corollary [Martin, Sagan 2006]
If D ⊆ Sn is λ-transitive and λ ⊴ µ, then D is also µ-transitive.

(n−t, t) ⊴ (n−t +1, t−1) for 1 ≤ t ≤ n/2 ⊴
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Other polytopes

C2 ≀ Sn

?
(complex regular polytope)

Cr ≀ Sn
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Transitivity in Cr ≀ Sn

(3, 0)

(λ, k)-transitive set of symmetries ←→ design in Cr ≀ Sn

(2, 1)

(21, 0)

(1, 2)

(12, 0) (11, 1)

(111, 0)
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Algebraic characterisation

• Irreducible characters of Cr ≀ Sn indexed by r -partitions (α1, . . . , αr )
of n

• Transitivity types indexed by (λ, k)
• Need a relation → that identifies which entries in the dual distribution

are 0
• Mayer 1975: Relation → for Coxeter groups A, B, D
• Relation → defined algorithmically
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Characterisation of designs in Cr ≀ Sn

Theorem [Martin, Sagan 2006]
Let λ be a partition of n and D ⊆ Sn. Then:
D is λ-transitive ⇐⇒ a′

µ = 0 for all λ ⊴ µ ̸= (n).

Theorem [K., Schmidt 2023]
Let D ⊆ Cr ≀ Sn. Then:
D is (λ, k)-transitive ⇐⇒ a′

(α1,...,αr ) = 0 for all (α1, . . . , αr ) ̸= (n, ∅, . . . , ∅)
with

(λ, k)→ (α1, . . . , αr ).

Theorem also works for any finite abelian group G instead of Cr
Theorem also works for more general transitivity types
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Comparing designs

Theorem [Martin, Sagan 2006]
If D ⊆ Sn is λ-transitive and λ ⊴ µ, then D is also µ-transitive.

Theorem [K.,Schmidt 2023]
If D ⊆ Cr ≀Sn is (λ, k)-transitive, then D is also (µ, l)-transitive if and only if

k ≤ l and λ ∪ (k) ⊴ µ ∪ (l).

(2, 1)

=⇒
(1, 2)
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Construction

Interpret Cr ≀ Sn as coloured permutations:

1 2 3 4
1 2 3 4
1 2 3 4

λ-transitive set in Sn + orthogonal array = λ-transitive set in Cr ≀ Sn

• Sn: recursive construction by Martin and Sagan
• orthogonal arrays: existence by Kuperberg, Lovett and Peled
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Thank you for your attention!
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The relation →
In C3 ≀ S10 we have (4211, 2)→ (3, 211, 3) because

(4211) (2)

0 1 2
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The generalised symmetric group

Cr ≀ Sn ∼= Cn
r ⋊ Sn

• ’coloured permutations’

S4: 1 2 3 4 −→ 2 1 4 3

C3 ≀ S4:

1 2 3 4
1 2 3 4
1 2 3 4

−→

2
2
2

1
1
1

4
4
4

3
3
3

2
2
2

1
1
1

3
3
3
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Construction

λ-transitive set in Sn + orthogonal array = λ-transitive set in Cr ≀ Sn

1 3 2
3 2 1
2 1 3
3 1 2
2 3 1
1 2 3

1 2 3

(111)

+ =

1 2 3
1 2 3
1 2 3
1 2 3

2 3 1
2 3 1
2 3 1
2 3 1

3 1 2
3 1 2
3 1 2
3 1 2

2 1 3
2 1 3
2 1 3
2 1 3

3 2 1
3 2 1
3 2 1
3 2 1

1 3 2
1 3 2
1 3 2
1 3 2

(11, 1)
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