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Preliminaries

G = (V , E ) has
no loops or multiple edges,
order n = |V (G)| and
size m = |E (G)| = e(G).

Cn = cycle on n vertices.
Kn = complete graphs on n vertices.
Ks,t = complete bipartite graph with parts of size s, t.
Tp(n) = balanced complete p-partite graph on n vertices.
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H-saturated graphs
Definition
Given a graph H, we say that a graph G is H-saturated (or
maximal H-free) if it does not contain an H-subgraph, but the
addition of any new edge creates at least one copy of H.

Kn is the only H-saturated graph for n < |V (H)|.
We use sat(n, H) for minimum size and ex(n, H) for
maximum size of an H-saturated graph on n vertices.
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Maximum m for K3-saturated graphs
If G is a K3 - free graph on n vertices, then m ≤

⌊
n2

4

⌋
(Mantel’s theorem, 1907)

Turán graph T2(n) = K⌊ n
2 ⌋,⌈ n

2 ⌉ is the unique graph that

achieves m = ex(n, K3) =
⌊

n2

4

⌋
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Minimum m for K3-saturated graphs

m = sat(n, K3) = n − 1 is achieved only by the star K1,n−1.

K3-saturated graphs are connected.
K3-saturated graphs have diameter 2.
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All m for K3-saturated graphs
For which n − 1 < m <

⌊
n2

4

⌋
are there K3-saturated graphs?

Theorem (Barefoot, Casey, Fisher, Fraughnaugh, Harary, 1994)

C5 - blow up works for 2n − 5 ≤ m ≤
⌊

(n−1)2

4

⌋
+ 1.

No K3 - saturated graphs for n − 1 < m < 2n − 5 and⌊
(n−1)2

4

⌋
+ 1 < m <

⌊
n2

4

⌋
, except Ks,n−s .
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All m for K3 − saturated graphs

Theorem (Barefoot, Casey, Fisher, Fraughnaugh, Harary, 1994)
No K3 - saturated graphs for n − 1 < m < 2n − 5 and⌊

(n−1)2

4

⌋
+ 1 < m <

⌊
n2

4

⌋
, except Ks,n−s .

K3-saturated graphs with m > n − 1 are 2-connected.
2-connected K3-saturated graphs must have
m ≥ 2(n − 4) + 3 = 2n − 5 (unbalanced C5-blowup.)
Non-bipartite K3-saturated graphs contain induced odd Ck :

m ≤ k+ k−1
2 (n−k)+

⌊
(n−k)2

4

⌋
=
⌊

(n−1)2−(k−3)2

4

⌋
+2 ≤

⌊
(n−1)2

4

⌋
+1.
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Extremal Kp-saturated graphs

Theorem (Turán, 1941)
ex(n, Kp) = e(Tp−1(n)) achieved only by the
balanced complete (p − 1)-partite graph Tp−1(n).

Theorem (Erdős, Hajnal, Moon, 1964)

sat(n, Kp) = (p − 2)(n − p + 2) +
(p−2

2
)

achieved only by the
unbalanced complete (p − 1)-partite graph K1,1,1,...,1,n−p+2.
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All m for Kp-saturated graphs

Theorem (Amin, J. Faudree, Gould, 2012)
K4-saturated graphs of size m exist if and only if
3n − 8 ≤ m ≤ n2−n+4

3 or
m = e(Ks,t,n−s−t) for s, t ≥ 1.

Theorem (Amin, J. Faudree, Gould, Sidorowicz, 2013)
Kp-saturated graphs of size m exist if and only if
(p − 1)(n − p

2 ) − 2 ≤ m ≤
⌊

(p−2)n2−2n+p−2
2(p−1)

⌋
+ 1 or

m = e(G) for G complete (p − 1)-partite.

André Kündgen The Saturation Spectrum of Odd Cycles



All m for Kp-saturated graphs

Theorem (Amin, J. Faudree, Gould, 2012)
K4-saturated graphs of size m exist if and only if
3n − 8 ≤ m ≤ n2−n+4

3 or
m = e(Ks,t,n−s−t) for s, t ≥ 1.

Theorem (Amin, J. Faudree, Gould, Sidorowicz, 2013)
Kp-saturated graphs of size m exist if and only if
(p − 1)(n − p

2 ) − 2 ≤ m ≤
⌊

(p−2)n2−2n+p−2
2(p−1)

⌋
+ 1 or

m = e(G) for G complete (p − 1)-partite.

André Kündgen The Saturation Spectrum of Odd Cycles



Maximum m for C5 - saturated graphs

Ks,n−s is C5-saturated when s, n − s ≥ 3.

Theorem (Bollabás, 1978)

If n ≥ 6, then ex(n, C5) =
⌊

n2

4

⌋
.
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Maximum m for C5 - saturated graphs, n = 5

Exactly two graphs achieve ex(5, C5) = 7:
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Minimum m for C5 - saturated graphs

Theorem (Chen, 2009)

If n ≥ 5, then sat(n, C5) =
⌈

10(n−1)
7

⌉
− ϵ, where

ϵ =
{

1, for n = 11, 12, 13, 14, 16, 18, 20
0, otherwise.
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All m for C5 - saturated graphs

Theorem (Gould, Kang, K, 2023)
For n ≥ 9, there is a C5-saturated graph on m edges if and only if

sat(n, C5) ≤ m ≤
⌊

(n − 3)2

4

⌋
+ 6 or

m = s · (n − s) or
m = s · (n − s − 2) + 3.

Non-existence proof for C5-saturated graphs is more involved
than for C3-saturated graphs (induction)

André Kündgen The Saturation Spectrum of Odd Cycles



All m for C5 - saturated graphs

• m = s · (n − s) • m = s · (n − s − 2) + 3
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All m for C5 - saturated graphs

C7 blow-up provides values for 3n − 15 ≤ m ≤
⌊

(n−3)2

4

⌋
+ 3

• C7(1, 1, 2, 2, r , p, q) • C7(1, 1, 1, 2, r , p, q) + e
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All m for C5 - saturated graphs

Definition
For c ≥ 1 and positive integers n0, n1, . . . , nc , let H(n0, n1, . . . , nc)
be the graph obtained from c + 1 cliques V0, V1, . . . , Vc with
|Vi | = ni by making every vertex in V0 adjacent to a fixed vertex
vi ∈ Vi for all 1 ≤ i ≤ c.

H(2, 2, 2, 2) H(2, 1, 1, 1) = K1,1,3
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All m for C5 - saturated graphs

• sat(n, C5) ≤ m ≤ 2n − 3
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All m for C5 - saturated graphs
• 2n − 2 ≤ m ≤ 3n − 16
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C2k+1-saturated graphs
Theorem (Füredi, Gunderson, 2015)

If n ≥ 2k − 2, then ex(n, C2k+1) =
⌊

n2

4

⌋
. Also characterized

extremal graphs for all n.

Theorem (Füredi, Kim, 2013)
sat(n, C2k+1) ≤ n + n

2k−3 + O(k2).

The exact value of sat(n, C2k+1) is unknown for 2k + 1 ≥ 7, but
Füredi, Kim conjecture that their construction is optimal.

Theorem (Gould, Kang, K, 2023)
If n ≥ 6k − 3, then there is a C2k+1 - saturated graph G on n
vertices and m edges if

k + 1
2 n − k ≤ m ≤

⌊
(n − 4k + 5)2

4

⌋
+
(

2k + 1
2

)
− 6
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Even cycles are much harder!

Theorem (Ollman, 1972)

sat(n, C4) =
⌊

3n−5
2

⌋
.

Theorem (Lan, Shi, Wang, Zhang, 2021)
4n
3 − 2 ≤ sat(n, C6) ≤ 4n

3 + 1
3 .

Theorem (Erdős (1965), Bondy-Simonovits (1974))

ex(n, C2k) ≤ ckn1+1/k .
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Open problems

Theorem (Gould, Kang, K, 2023)
A nonbipartite 2-connected C5-saturated graph has at most⌊

(n−3)2

4

⌋
+ 6 edges.

What is the maximum number of edges M in a nonbipartite
2-connected C2k+1-saturated graph?
M ≥ (n−4k+5)2

4
Which graphs have a gapless saturation spectrum?
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