The Saturation Spectrum of Odd Cycles

André Kündgen

California State University San Marcos

45 ACC, Perth December 13, 2023

Joint work with Ron Gould and Minjung (Michelle) Kang

< 回 > < 三 > < 三 >

• G = (V, E) has

- no loops or multiple edges,
- order n = |V(G)| and
- size m = |E(G)| = e(G).
- $C_n =$ cycle on *n* vertices.
- K_n = complete graphs on n vertices.
- $K_{s,t}$ = complete bipartite graph with parts of size s, t.
- $T_p(n)$ = balanced complete *p*-partite graph on *n* vertices.

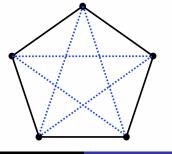
▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

H-saturated graphs

Definition

Given a graph H, we say that a graph G is H-saturated (or maximal H-free) if it does not contain an H-subgraph, but the addition of any new edge creates at least one copy of H.

K_n is the only H-saturated graph for n < |V(H)|.
We use sat(n, H) for minimum size and ex(n, H) for maximum size of an H-saturated graph on n vertices.



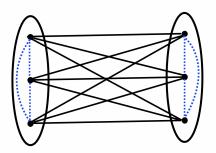
Maximum m for K_3 -saturated graphs

• If G is a K_3 - free graph on n vertices, then $m \le \left\lfloor \frac{n^2}{4} \right\rfloor$ (Mantel's theorem, 1907)

白 と く ヨ と く ヨ と …

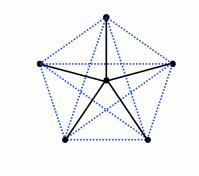
Maximum m for K_3 -saturated graphs

- If G is a K₃ free graph on n vertices, then m ≤ [n²/4]
 (Mantel's theorem, 1907)
- Turán graph $T_2(n) = K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor}$ is the unique graph that achieves $m = ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$



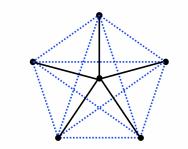
Minimum m for K_3 -saturated graphs

• $m = \operatorname{sat}(n, K_3) = n - 1$ is achieved only by the star $K_{1,n-1}$.



Minimum m for K_3 -saturated graphs

• $m = \operatorname{sat}(n, K_3) = n - 1$ is achieved only by the star $K_{1,n-1}$.



- *K*₃-saturated graphs are connected.
- K₃-saturated graphs have diameter 2.

For which $n-1 < m < \left\lfloor \frac{n^2}{4} \right\rfloor$ are there K_3 -saturated graphs?

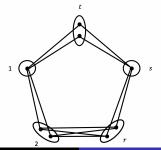
Image: A Image: A

For which $n-1 < m < \left\lfloor \frac{n^2}{4} \right\rfloor$ are there K_3 -saturated graphs?

Theorem (Barefoot, Casey, Fisher, Fraughnaugh, Harary, 1994)

•
$$C_5$$
 - blow up works for $2n-5 \le m \le \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$.

• No
$$K_3$$
 - saturated graphs for $n - 1 < m < 2n - 5$ and $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 < m < \left\lfloor \frac{n^2}{4} \right\rfloor$, except $K_{s,n-s}$.



André Kündgen The Saturation Spectrum of Odd Cycles

Theorem (Barefoot, Casey, Fisher, Fraughnaugh, Harary, 1994)

No
$$K_3$$
 - saturated graphs for $n - 1 < m < 2n - 5$ and $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 < m < \left\lfloor \frac{n^2}{4} \right\rfloor$, except $K_{s,n-s}$.

イロン 不同 とうほう 不同 とう

Theorem (Barefoot, Casey, Fisher, Fraughnaugh, Harary, 1994)

No
$$K_3$$
 - saturated graphs for $n - 1 < m < 2n - 5$ and $\left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1 < m < \left\lfloor \frac{n^2}{4} \right\rfloor$, except $K_{s,n-s}$.

- K_3 -saturated graphs with m > n 1 are 2-connected.
- 2-connected K_3 -saturated graphs must have $m \ge 2(n-4) + 3 = 2n-5$ (unbalanced C_5 -blowup.)
- Non-bipartite K_3 -saturated graphs contain induced odd C_k :

$$m \leq k + \frac{k-1}{2}(n-k) + \left\lfloor \frac{(n-k)^2}{4} \right\rfloor = \left\lfloor \frac{(n-1)^2 - (k-3)^2}{4} \right\rfloor + 2 \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (Turán, 1941)

 $ex(n, K_p) = e(T_{p-1}(n))$ achieved only by the **balanced** complete (p-1)-partite graph $T_{p-1}(n)$.

イロト イヨト イヨト イヨト

Theorem (Turán, 1941)

 $ex(n, K_p) = e(T_{p-1}(n))$ achieved only by the **balanced** complete (p-1)-partite graph $T_{p-1}(n)$.

Theorem (Erdős, Hajnal, Moon, 1964)

sat $(n, K_p) = (p-2)(n-p+2) + \binom{p-2}{2}$ achieved only by the **unbalanced** complete (p-1)-partite graph $K_{1,1,1,\dots,1,n-p+2}$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Amin, J. Faudree, Gould, 2012)

 K_{4} -saturated graphs of size m exist if and only if $3n-8 \le m \le \frac{n^2-n+4}{3}$ or $m = e(K_{s,t,n-s-t})$ for $s, t \ge 1$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Theorem (Amin, J. Faudree, Gould, 2012)

 K_{4} -saturated graphs of size m exist if and only if $3n-8 \le m \le \frac{n^2-n+4}{3}$ or $m = e(K_{s,t,n-s-t})$ for $s, t \ge 1$.

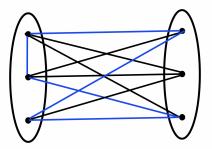
Theorem (Amin, J. Faudree, Gould, Sidorowicz, 2013)

 K_p -saturated graphs of size m exist if and only if $(p-1)(n-\frac{p}{2})-2 \le m \le \left\lfloor \frac{(p-2)n^2-2n+p-2}{2(p-1)}
ight
floor + 1$ or m = e(G) for G complete (p-1)-partite.

イロン イヨン イヨン

Maximum m for C_5 - saturated graphs

 $K_{s,n-s}$ is C_5 -saturated when $s, n-s \geq 3$.



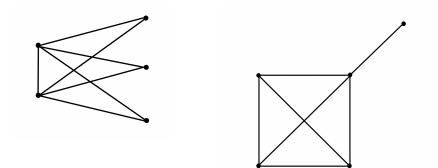
Theorem (Bollabás, 1978)

If
$$n \ge 6$$
, then $ex(n, C_5) = \left| \frac{n^2}{4} \right|$.

<回と < 回と < 回と

Maximum *m* for C_5 - saturated graphs, n = 5

Exactly two graphs achieve $ex(5, C_5) = 7$:



同 とう モン うけい

Theorem (Chen, 2009)

If
$$n \ge 5$$
, then sat $(n, C_5) = \left\lceil \frac{10(n-1)}{7} \right\rceil - \epsilon$, where $\epsilon = \begin{cases} 1, & \text{for} \quad n = 11, 12, 13, 14, 16, 18, 20 \\ 0, & \text{otherwise.} \end{cases}$

(1日) (1日) (日) (日)

臣

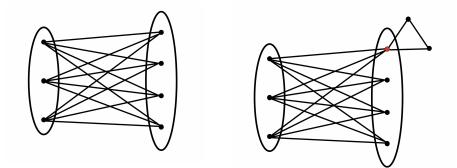
For $n \ge 9$, there is a C₅-saturated graph on m edges if and only if

$$\operatorname{sat}(n, C_5) \leq m \leq \left\lfloor rac{(n-3)^2}{4}
ight
vert + 6 \quad or$$
 $m = s \cdot (n-s) \quad or$
 $m = s \cdot (n-s-2) + 3.$

• Non-existence proof for C₅-saturated graphs is more involved than for C₃-saturated graphs (induction)

向 ト イヨ ト イヨト

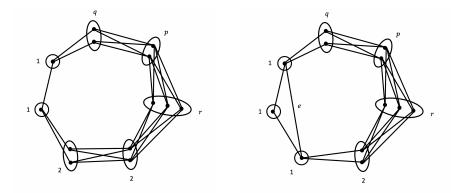
•
$$m = s \cdot (n - s)$$
 • $m = s \cdot (n - s - 2) + 3$



ヘロア 人間 アメヨア 人間 アー

臣

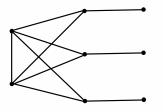
C₇ blow-up provides values for $3n - 15 \le m \le \left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 3$ • C₇(1, 1, 2, 2, r, p, q) • C₇(1, 1, 1, 2, r, p, q) + e



向 ト く ヨ ト く ヨ ト

Definition

For $c \ge 1$ and positive integers n_0, n_1, \ldots, n_c , let $H(n_0, n_1, \ldots, n_c)$ be the graph obtained from c + 1 cliques V_0, V_1, \ldots, V_c with $|V_i| = n_i$ by making every vertex in V_0 adjacent to a fixed vertex $v_i \in V_i$ for all $1 \le i \le c$.

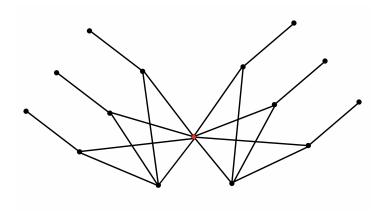


H(2, 2, 2, 2)

크

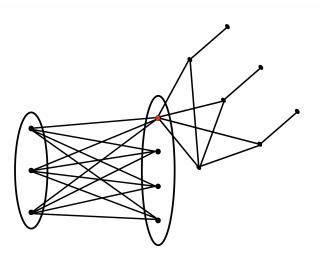
$$H(2,1,1,1) = K_{1,1,3}$$

• $sat(n, C_5) \le m \le 2n - 3$



・日・ ・ ヨ・ ・ ヨ・

• $2n-2 \leq m \leq 3n-16$



(1日) (1日) (日)

C_{2k+1} -saturated graphs

Theorem (Füredi, Gunderson, 2015)

If $n \ge 2k - 2$, then $ex(n, C_{2k+1}) = \lfloor \frac{n^2}{4} \rfloor$. Also characterized extremal graphs for all n.

C_{2k+1} -saturated graphs

Theorem (Füredi, Gunderson, 2015)

If $n \ge 2k - 2$, then $ex(n, C_{2k+1}) = \lfloor \frac{n^2}{4} \rfloor$. Also characterized extremal graphs for all n.

Theorem (Füredi, Kim, 2013)

 $sat(n, C_{2k+1}) \le n + \frac{n}{2k-3} + O(k^2).$

The exact value of $sat(n, C_{2k+1})$ is unknown for $2k + 1 \ge 7$, but Füredi, Kim conjecture that their construction is optimal.

・ 回 ト ・ ヨ ト ・ ヨ ト …

C_{2k+1} -saturated graphs

Theorem (Füredi, Gunderson, 2015)

If $n \ge 2k - 2$, then $ex(n, C_{2k+1}) = \lfloor \frac{n^2}{4} \rfloor$. Also characterized extremal graphs for all n.

Theorem (Füredi, Kim, 2013)

$$sat(n, C_{2k+1}) \le n + \frac{n}{2k-3} + O(k^2).$$

The exact value of $sat(n, C_{2k+1})$ is unknown for $2k + 1 \ge 7$, but Füredi, Kim conjecture that their construction is optimal.

Theorem (Gould, Kang, K, 2023)

If $n \ge 6k - 3$, then there is a C_{2k+1} - saturated graph G on n vertices and m edges if

$$\frac{k+1}{2}n-k \le m \le \left\lfloor \frac{(n-4k+5)^2}{4} \right\rfloor + \binom{2k+1}{2} - 6$$

Theorem (Ollman, 1972)

$$\operatorname{sat}(n, C_4) = \left\lfloor \frac{3n-5}{2} \right\rfloor$$

Theorem (Lan, Shi, Wang, Zhang, 2021)

$$\frac{4n}{3} - 2 \le \operatorname{sat}(n, C_6) \le \frac{4n}{3} + \frac{1}{3}.$$

イロト イヨト イヨト イヨト

Theorem (Ollman, 1972)

$$\operatorname{sat}(n, C_4) = \left\lfloor \frac{3n-5}{2} \right\rfloor$$

Theorem (Lan, Shi, Wang, Zhang, 2021)

$$\frac{4n}{3} - 2 \le \operatorname{sat}(n, C_6) \le \frac{4n}{3} + \frac{1}{3}.$$

Theorem (Erdős (1965), Bondy-Simonovits (1974))

 $\exp(n, C_{2k}) \leq ckn^{1+1/k}.$

イロン イヨン イヨン イヨン

크

A nonbipartite 2-connected C₅-saturated graph has at most $\left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 6$ edges.

(4回) (4回) (日)

A nonbipartite 2-connected C₅-saturated graph has at most $\left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 6$ edges.

• What is the maximum number of edges M in a nonbipartite 2-connected C_{2k+1} -saturated graph?

・日・ ・ ヨ・ ・ ヨ・

A nonbipartite 2-connected C₅-saturated graph has at most $\left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 6$ edges.

• What is the maximum number of edges M in a nonbipartite 2-connected C_{2k+1} -saturated graph? $M \ge \frac{(n-4k+5)^2}{4}$

・ 回 ト ・ ヨ ト ・ ヨ ト

A nonbipartite 2-connected C₅-saturated graph has at most $\left\lfloor \frac{(n-3)^2}{4} \right\rfloor + 6$ edges.

- What is the maximum number of edges M in a nonbipartite 2-connected C_{2k+1} -saturated graph? $M \ge \frac{(n-4k+5)^2}{4}$
- Which graphs have a gapless saturation spectrum?

・ 回 ト ・ ヨ ト ・ ヨ ト …