The directed Oberwolfach problem with two tables

Alice Lacaze-Masmonteil, University of Ottawa Joint work with Daniel Horsley, Monash University

December 11, 2023

Acknowledgements

- Daniel Horsley;
- Monash Department of Mathematics;
- Natural Sciences and Engineering Council of Canada.

NSERC CRSNG

A simple example

The setting: Consider a conference with 12 participants. To facilitate networking, the organizing committee decides to host 11 banquets. The banquet hall has 2 tables that seat 4 and 8 participants.

The problem: The organizing committee needs a set of 11 seating arrangements (one for each banquet) such that each participant is seated to the right of every other participants exactly once.

Is this possible?

Construction of a seating arrangement

Figure: The 12 participants (one for each vertex).

Construction of a seating arrangement

Figure: One seating arrangement with one table of length 4 and one table of length 8 .

Construction of a seating arrangement

Figure: One seating arrangement with one table of length 4 and one table of length 8 .

Construction of a seating arrangement

Figure: Another seating arrangement with one table of length 4 and one table of length 8.

The directed Oberwolfach problem

The setting: Consider a conference with n participants. To facilitate networking, the organizing committee decides to host $n-1$ banquets. The banquet hall has t round tables that sit $m_{1}, m_{2}, \ldots, m_{t}$ participants such that $m_{1}+m_{2}+\ldots+m_{t}=n$.

The problem: The organizing committee needs a set of $n-1$ seating arrangements (one for each banquet) such that each participant is seated to the right of every other participants exactly once.

Is this possible?

The complete symmetric digraph

Definition

Given a graph H, its directed symmetric counterpart is the digraph obtained by replacing each edge of H with a pair of arcs (one for each direction).

Figure: The complete graph K_{4}.

The complete symmetric digraph

Definition

Given a graph H, its directed symmetric counterpart is the digraph obtained by replacing each edge of H with a pair of arcs (one for each direction).

Figure: The complete symmetric digraph K_{4}^{*}.
The complete symmetric digraph K_{n}^{*} is the directed symmetric counterpart of K_{n}.

Definitions

Definition

A $\left[m_{1}, m_{2}, \ldots m_{t}\right]$-factor of digraph G is a spanning subdigraph of G that is the disjoint union of $\vec{C}_{m_{1}}, \vec{C}_{m_{2}}, \ldots, \vec{C}_{m_{t}}$.

Figure: $\mathrm{A}[4,8]$-factor of K_{12}^{*}.

Definitions

Definition

A $\left[m_{1}, m_{2}, \ldots, m_{t}\right]$-factorization of digraph G is a decomposition of G into $\left[m_{1}, m_{2}, \ldots, m_{t}\right]$-factors.

The graph-theoretic formulation of the directed OP

Problem ($\left.\mathrm{OP}^{*}\left(m_{1}, m_{2}, \ldots, m_{t}\right)\right)$
Let $m_{1}, m_{2}, \ldots, m_{t} \geqslant 2$. If $m_{1}+m_{2}+\ldots+m_{t}=n$, does K_{n}^{*} admit a $\left[m_{1}, m_{2}, \ldots, m_{t}\right]$-factorization?

If $m_{1}=m_{2}=\ldots=m_{t}=m$, then we write $\operatorname{OP}^{*}\left(m^{t}\right)$.

Background

Theorem (Bermond, Germa, and Sotteau (1979); Tillson (1980), Bennett and Zhang (1990); Adams and Bryant (Unpublished); Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess, Francetić, and Šajna (2018); L-M (2024))

The $O P^{*}\left(m^{t}\right)$ has a solution except when

$$
(m, t) \notin\{(3,2),(4,1),(6,1)\} .
$$

The directed OP has been completely resolved when all tables are of the same length.

Background

Theorem (Kadri and Šajna (2023+))
Let $m_{1}<m_{2}$. The $O P^{*}\left(m_{1}, m_{2}\right)$ has a solution except possibly when $m_{1} \in\{4,6\}$ and m_{2} is even.

Idea: Take a solution to $\mathrm{OP}^{*}\left(m_{1}^{1}\right)$ and construct a solution to $\mathrm{OP}^{*}\left(m_{1}, m_{2}\right)$.
Problem: $\mathrm{OP}^{*}\left(4^{1}\right)$ and $\mathrm{OP}^{*}\left(6^{1}\right)$ do not have a solution.

Result

Theorem (Horsley and L-M (2023+))
Let $m_{1}<m_{2}$. The $O P^{*}\left(m_{1}, m_{2}\right)$ has a solution when $m_{1} \in\{4,6\}$ and m_{2} is even.

We construct an $\left[m_{1}, m_{2}\right]$-factorization of K_{n}^{*} when $m_{1}+m_{2}=n$, $m_{1} \in\{4,6\}$, and m_{2} is even.

Strategy when $n \equiv 2(\bmod 4)$

Step 1: Decompose K_{n}^{*} into $\frac{n-3}{2}$ spanning subdigraphs that fall into one of two isomorphisms classes G_{1} and G_{2}.

Step 2: Show that G_{1} and G_{2} both admit a $\left[m_{1}, m_{2}\right]$-factorization.

First class of digraphs

Objective: To construct a $[4,10]$-factorization of K_{14}^{*}.

First class of digraphs

Objective: To construct a $[4,10]$-factorization of K_{14}^{*}.

Figure: The first directed graph $G_{1}=\vec{C}_{7}[2]$.

First class of digraphs

Objective: To construct a [4, 10]-factorization of K_{14}^{*}.

Figure: The underlying graph of $\vec{C}_{7}[2]$ written $C_{7}[2]$.

Easy result

Lemma (Häggkvist Lemma (Häggkvist (1985)))

Let $m_{1}, m_{2}, \ldots, m_{t}$ be even integers greater than 2. The graph $C_{r}[2]$ admits a undirected $\left[m_{1}, m_{2}, \ldots, m_{t}\right]$-factorization.

Figure: A undirected [4, 10]-factor of $C_{7}[2]$.

Easy result

Corollary

Let $m_{1}, m_{2}, \ldots, m_{t}$ be even integers greater than 2. The graph $\vec{C}_{r}[2]$ admits an $\left[m_{1}, m_{2}, \ldots, m_{t}\right]$-factorization.

Figure: Two directed [4, 10]-factors of $\vec{C}_{7}[2]$.

Second spanning subdigraph

Figure: The underlying graph of G_{2}.

Each edge represents a pair of arcs, one for each direction.

Constructing a [4, 10]-factor.

Figure: A $[4,10]$-factor of G_{2}.

Extension: a simple guide

Step 1:

Extension: a simple guide

Step 2:

Extension: a simple guide

Step 3:

Extension

Figure: A $[4,10]$-factor of G_{2}.

Figure: An extension of length 8.

Extension

Figure: $\mathrm{A}[4,10]$-factor of G_{2}.

Figure: An extension of length 16 .

Proposition

The digraph G_{2} admits a $\left[m_{1}, m_{2}\right]$-factorization for $m_{1} \in\{4,6\}$ and $m_{1}+m_{2} \equiv 2(\bmod 4)$.

The case $n \equiv 0(\bmod 4)$

We obtain a decomposition of K_{n}^{*} into the following two digraphs:

Figure: The underlying graph of G_{1}.

Figure: The underlying graph of G_{2}.

A complete solution

Theorem (Kadri and Šajna (2023+) and Horsley and L-M (2023+))

Let $m_{1}<m_{2}$. The $O P^{*}\left(m_{1}, m_{2}\right)$ has a solution.

Next step: To generalize our methods to obtain a solution to $\mathrm{OP}^{*}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ for any combinations of even $m_{1}, m_{2}, \ldots, m_{t}$.

