Constructing witnesses for non-spreading permutation groups

Jesse Lansdown
School of Mathematics and Statistics, University of Canterbury

45 ACC, 2023
Perth

Synchronisation heirarchy

A permutation group satisfies:
spreading
\Downarrow
separating
\Downarrow
synchronising
\Downarrow
primitive

Synchronisation heirarchy

A permutation group satisfies:

	Best defined by lack of a witness.
spreading	For example
\Downarrow	- primitive: No G-invariant
separating	partition.
\Downarrow	- imprimitive: $\exists G$-invariant
synchronising	partiton.

Synchronisation heirarchy

A permutation group satisfies:

	Best defined by lack of a witness.	
spreading	imprimitive	
\Downarrow	For example	\downarrow
separating	- primitive: No G-invariant	nonsynchronising
\Downarrow	partition.	\downarrow
synchronising	- imprimitive: $\exists G$-invariant	nonseparating
\Downarrow	partiton.	\downarrow
primitive		nonspreading

Witnesses

(im)primitive

Witnesses

(im)primitive

(non)synchronising

Witnesses

Witnesses

Let G be a permutation group acting on the set Ω.

For the following properties, witnesses are given by:

- imprimitive: invariant partition
- non-synchronising: section-regular partition
- non-separating: set A, set B s.t. $|A||B|=|\Omega|$ and $\left|A \cap B^{g}\right|=1, \forall g \in G$
- non-spreading: multiset A, set B s.t. $|A|$ divides $|\Omega|$ and $\left|A \star B^{g}\right|=\lambda, \forall g \in G$

Witnesses using graphs

Theorem
G is non-synchronising if and only if there exists a non-trivial G-invariant graph Γ such that $\omega(\Gamma)=\chi(\Gamma)$.

Theorem
G is non-separating if and only if there exists a non-trivial G-invariant graph Γ such that $\omega(\Gamma) \alpha(\Gamma)=|\Omega|$.

Witnesses using graphs

What about spreading? No graph version!

Difficult to find witnesses due to lack of tools.

For example, Aráujo, Cameron, and Steinberg, comment in "Between primitive and 2-transitive: Synchronization and its friends" (2017) that
"Pablo Spiga was able to show that $\operatorname{PSp}(4, \mathrm{p})$ is non-spreading for $p=3,5,7$ by computational methods. The issue is unresolved in general."

Hemisystems

Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an incidence structure. A hemisystem $H \subset \mathcal{P}$ is such that for every $B \in \mathcal{B}$, precisely half the points of B are in H.

G: Aut (\mathcal{S}) acting on points.
Witness: Hemisystem + point set of a line.

The 'AB-Lemma'

Theorem (Bayens)
Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an incidence structure. Let A and B be two subgroups of $\operatorname{Aut}(\mathcal{S})$ such that

1. B is a normal subgroup of A,
2. A and B have the same orbits on \mathcal{B},
3. each A-orbit on \mathcal{P} splits into two B-orbits.

Then there are 2^{n} hemisystems admitting B, where n is the number of A-orbits on \mathcal{P}.

The 'AB-Lemma'

Theorem (Bayens)
Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an incidence structure. Let A and B be two subgroups of $\operatorname{Aut}(\mathcal{S})$ such that

1. B is a normal subgroup of A,
2. A and B have the same orbits on \mathcal{B},
3. each A-orbit on \mathcal{P} splits into two B-orbits.

Then there are 2^{n} hemisystems admitting B, where n is the number of A-orbits on \mathcal{P}.

An 'AB-Lemma' type result

Relaxations:

- Sufficient to be locally hemisystem-like
- "exactly half" \rightarrow splits into pieces
- lines point-sets could be anything

An 'AB-Lemma' type result

Relaxations:

- Sufficient to be locally hemisystem-like
- "exactly half" \rightarrow splits into pieces
- lines point-sets could be anything

Theorem (Bamberg, Giudici, JL, Royle, 2023+)

Let G be a group acting on Ω, and let A and B be subgroups of G such that $B \triangleleft A$. Let $\omega_{1}, \ldots, \omega_{k} \in \Omega$ with $k \geqslant 2$ such that $\omega_{i}^{B} \neq \omega_{j}^{B}$ for $i \neq j$, and $\omega_{1}^{A}=\omega_{1}^{B} \cup \omega_{2}^{B} \cup \ldots \cup \omega_{k}^{B}$. Let $X \subset \Omega$, and $\Delta=\left\{Y \in X^{G} \mid Y \cap \omega_{1}^{A} \neq \varnothing\right\}$. If the orbits of A and B on Δ are the same, then $\left(X, \Omega+k \omega_{1}^{B}-\omega_{1}^{A}\right)$ is a witness to G being non-spreading (where $k \omega_{1}^{B}$ is the multiset corresponding to ω_{1}^{B} with each entry assigned multiplicity k).

An 'AB-Lemma' type result

Let $Z \in \Delta$ and $i \in\{1, \ldots, k\}$. Then

$$
\begin{aligned}
\left|Z \cap \omega_{1}^{B}\right| & =\left|Z \cap\left(\omega_{i}^{a_{i}}\right)^{B}\right| & & \left(\omega_{i} \in \omega_{1}^{A}\right) \\
& =\left|Z \cap\left(\omega_{i}^{B}\right)^{a_{i}}\right| & & (B \triangleleft A) \\
& =\mid Z^{a_{i}^{-1} b_{i} \cap \omega_{i}^{B} \mid} & & \left(\Delta^{A}=\Delta^{B}\right) \\
& =\left|Z \cap \omega_{i}^{B}\right| . & &
\end{aligned}
$$

An 'AB-Lemma' type result

If $Z \in X^{G} \backslash \Delta$ then $\left|Z \cap \omega_{i}^{B}\right|=0$ by definition of Δ.
So $\left|X^{g} \cap \omega_{1}^{B}\right|=\left|X^{g} \cap \omega_{i}^{B}\right|$ for all $g \in G$ and $i \in\{1, \ldots, k\}$.
Hence $k\left|X^{g} \cap \omega_{1}^{B}\right|=\left|X^{g} \cap \omega_{1}^{A}\right|$.
Let $W=\Omega+k \omega_{1}^{B}-\omega_{1}^{A}$. Then

- X is a set
- W is a non-trivial multiset (since $k>1$)
- $|W|$ divides $|\Omega|$
- $\left|X^{g} \star W\right|=|\Omega|$ for all $g \in G$.

So (X, W) is a witness to G being non-spreading.

Applications

With Bamberg, Giudici and Royle, I have applied this technique to find witnesses for many classical group actions. For example

Theorem (Bamberg, JL, Giudici, Royle, 2023 +)
For $r>1$ and even, the permutation groups arising from the action of $\operatorname{PSp}(2 \mathrm{r}, \mathrm{q})$, $\mathrm{PSU}\left(2 \mathrm{r}, \mathrm{q}_{0}\right)$, and $\mathrm{PO}^{+}(2 \mathrm{r}, \mathrm{q})$ on totally isotropic $\frac{r}{2}$-spaces are non-spreading.

It is also a small but important component in the following recent result.
Theorem (Bamberg, Freedman, Giudici, 2023+)
Primitive groups of diagonal type are non-spreading.

Combinatorics in Christchurch
4-6 June, 2024
Invited speakers: Bill Martin (keynote), Carmen Amarra, John Bamberg, Gary Greaves, Anita Liebenau, Sho Suda

Organisers: Jesse Lansdown and Geertrui Van de Voorde

