Constructing witnesses for non-spreading permutation groups

Jesse Lansdown

School of Mathematics and Statistics, University of Canterbury

> 45 ACC, 2023 Perth

Synchronisation heirarchy

A permutation group satisfies:

spreading ↓ separating ↓ synchronising ↓ primitive

Synchronisation heirarchy

A permutation group satisfies:

spreading ↓ separating ↓ synchronising ↓ primitive Best defined by lack of a witness.

For example

- primitive: No *G*-invariant partition.
- imprimitive: ∃*G*-invariant partiton.

Synchronisation heirarchy

A permutation group satisfies:

spreading ↓ separating ↓ synchronising ↓ primitive Best defined by lack of a witness.

For example

- primitive: No *G*-invariant partition.
- imprimitive: ∃*G*-invariant partiton.

imprimitive \downarrow nonsynchronising \downarrow nonseparating \downarrow nonspreading

Witnesses

(im)primitive

Witnesses

(im)primitive

(non)synchronising

Witnesses

(im)primitive

(non)synchronising

(non)separating

Let G be a permutation group acting on the set Ω .

For the following properties, witnesses are given by:

- imprimitive: invariant partition
- non-synchronising: section-regular partition
- non-separating: set A, set B s.t. $|A||B| = |\Omega|$ and $|A \cap B^g| = 1, \forall g \in G$
- non-spreading: multiset A, set B s.t. |A| divides $|\Omega|$ and $|A \star B^g| = \lambda, \forall g \in G$

Witnesses using graphs

Theorem

G is non-synchronising if and only if there exists a non-trivial *G*-invariant graph Γ such that $\omega(\Gamma) = \chi(\Gamma)$.

Theorem

G is non-separating if and only if there exists a non-trivial *G*-invariant graph Γ such that $\omega(\Gamma)\alpha(\Gamma) = |\Omega|$.

 $\omega\cdot\alpha=\mathbf{3}\cdot\mathbf{7}=\mathbf{21}$

Witnesses using graphs

What about spreading? No graph version!

Difficult to find witnesses due to lack of tools.

For example, Aráujo, Cameron, and Steinberg, comment in "Between primitive and 2-transitive: Synchronization and its friends" (2017) that

"Pablo Spiga was able to show that PSp(4, p) is non-spreading for p = 3, 5, 7 by computational methods. The issue is unresolved in general."

Hemisystems

Let $S = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an incidence structure. A hemisystem $H \subset \mathcal{P}$ is such that for every $B \in \mathcal{B}$, precisely half the points of B are in H.

G: Aut(S) acting on points. Witness: Hemisystem + point set of a line.

The 'AB-Lemma'

Theorem (Bayens)

Let S = (P, B, I) be an incidence structure. Let A and B be two subgroups of Aut(S) such that

- 1. B is a normal subgroup of A,
- 2. A and B have the same orbits on \mathcal{B} ,
- 3. each A-orbit on \mathcal{P} splits into two B-orbits.

Then there are 2^n hemisystems admitting *B*, where *n* is the number of *A*-orbits on *P*.

The 'AB-Lemma'

Theorem (Bayens)

Let S = (P, B, I) be an incidence structure. Let A and B be two subgroups of Aut(S) such that

- 1. B is a normal subgroup of A,
- 2. A and B have the same orbits on \mathcal{B} ,
- 3. each A-orbit on \mathcal{P} splits into two B-orbits.

Then there are 2^n hemisystems admitting B, where n is the number of A-orbits on \mathcal{P} .

Relaxations:

- Sufficient to be locally hemisystem-like
- "exactly half" \rightarrow splits into pieces
- lines point-sets could be anything

Relaxations:

- Sufficient to be locally hemisystem-like
- "exactly half" ightarrow splits into pieces
- lines point-sets could be anything

Theorem (Bamberg, Giudici, JL, Royle, 2023+)

Let G be a group acting on Ω , and let A and B be subgroups of G such that $B \triangleleft A$. Let $\omega_1, \ldots, \omega_k \in \Omega$ with $k \ge 2$ such that $\omega_i^B \neq \omega_j^B$ for $i \ne j$, and $\omega_1^A = \omega_1^B \cup \omega_2^B \cup \ldots \cup \omega_k^B$. Let $X \subset \Omega$, and $\Delta = \{Y \in X^G \mid Y \cap \omega_1^A \ne \emptyset\}$. If the orbits of A and B on Δ are the same, then $(X, \Omega + k\omega_1^B - \omega_1^A)$ is a witness to G being non-spreading (where $k\omega_1^B$ is the multiset corresponding to ω_1^B with each entry assigned multiplicity k).

Let $Z \in \Delta$ and $i \in \{1, ..., k\}$. Then $|Z \cap \omega_1^B| = |Z \cap (\omega_i^{a_i})^B|$ $(\omega_i \in \omega_1^A)$ $= |Z \cap (\omega_i^B)^{a_i}|$ $(B \triangleleft A)$ $= |Z^{a_i^{-1}b_i} \cap \omega_i^B|$ $(\Delta^A = \Delta^B)$ $= |Z \cap \omega_i^B|.$

If $Z \in X^G \setminus \Delta$ then $|Z \cap \omega_i^B| = 0$ by definition of Δ . So $|X^g \cap \omega_1^B| = |X^g \cap \omega_i^B|$ for all $g \in G$ and $i \in \{1, \dots, k\}$. Hence $k|X^g \cap \omega_1^B| = |X^g \cap \omega_1^A|$.

Let $W = \Omega + k\omega_1^B - \omega_1^A$. Then

- X is a set
- W is a non-trivial multiset (since k > 1)
- |W| divides $|\Omega|$
- $|X^g \star W| = |\Omega|$ for all $g \in G$.

So (X, W) is a witness to G being non-spreading.

Applications

With Bamberg, Giudici and Royle, I have applied this technique to find witnesses for many classical group actions. For example

Theorem (Bamberg, JL, Giudici, Royle, 2023+)

For r > 1 and even, the permutation groups arising from the action of PSp(2r, q), $PSU(2r, q_0)$, and $PO^+(2r, q)$ on totally isotropic $\frac{r}{2}$ -spaces are non-spreading.

It is also a small but important component in the following recent result. Theorem (Bamberg, Freedman, Giudici, 2023+) Primitive groups of diagonal type are non-spreading.

Thank you!

Combinatorics in Christchurch 4 - 6 June, 2024

Invited speakers: Bill Martin (keynote), Carmen Amarra, John Bamberg, Gary Greaves, Anita Liebenau, Sho Suda

Organisers: Jesse Lansdown and Geertrui Van de Voorde

