Self avoiding walks on graphs with infinitely many ends

Florian Lehner

joint work with Christian Lindorfer and Christoforos Panagiotis

Mathematicians are like Frenchmen:
whatever you say to them they translate into their own language and forthwith it is something entirely different. Johann Wolfgang von Goethe

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | 0 | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | 0 | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

L

L

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | 0 | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

$\stackrel{\square}{\circ}$

				0	A_{2}										

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$$
2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}
$$

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}$

$\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1}$

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}$
$\mu=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}$

$\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1}$

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$$
2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}
$$

$\mu=2.63815853032790 \ldots$

$\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1}$

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}$
$\mu=2.63815853032790 \ldots$

$\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1}$
$\mu=\sqrt{2+\sqrt{2}}$
Duminil-Copin \& Smirnov 2012

Two basic questions

What is the number c_{n} of self-avoiding walks of length n ?
How far apart are the endpoints of a 'typical' self-avoiding walk?

$2^{n} \leq c_{n} \leq 4 \cdot 3^{n-1}$
$\mu=2.63815853032790 \ldots$

$$
\begin{gathered}
\sqrt{2}^{n} \leq c_{n} \leq 3 \cdot 2^{n-1} \\
\mu=\sqrt{2+\sqrt{2}}
\end{gathered}
$$

Duminil-Copin \& Smirnov 2012

comex

$$
\begin{gathered}
\\
c=3=3
\end{gathered}
$$

$$
\begin{gathered}
c_{n}=4 \cdot 3^{n-1} \\
\mu=3
\end{gathered}
$$

$$
\begin{aligned}
& \mu= \frac{1+\sqrt{5}}{2} \\
& \quad \text { e.g. Alm \& Jansen } 1990
\end{aligned}
$$

$\mu=\frac{1}{z^{*}}$, where z^{*} is the smallest root of

$$
4 z^{5}+8 z^{4}+8 z^{3}+4 z^{2}-1
$$

e.g. Müller \& Gilch 2017

Theorem.

Let G be a quasi-transitive, locally finite graph with more than one end.

Then G has a 'nice' tree decomposition.

Dunwoody, Krön 2015
Carmesin, Hamann, Miraftab 2021
Hamann, L., Miraftab, Rühmann 2022
L., Lindorfer, Panagiotis 2023+

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.
There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

The arrangement corresponding to a self avoiding walk consists of:

- shapes on 'parts'
- configurations on 'adhesion sets'

Observation.

There are as many self-avoiding walks as there are consistent arrangements.

Definition.

A completion of a configuration c is a consistent arrangement on 'one side' of the corresponding adhesion set.

Observation.

Let $F_{c}(z)$ be the generating function counting c-completions of a given length.

Then $\mathbf{F}(z)=\left(F_{c}(z)\right)_{c}$ config. satisfies a recursion of the form

$$
\mathbf{F}(z)=P(z, \mathbf{F}(z))
$$

Definition.

A completion of a configuration c is a consistent arrangement on 'one side' of the corresponding adhesion set.

Observation.

Let $F_{c}(z)$ be the generating function counting c-completions of a given length.

Then $\mathbf{F}(z)=\left(F_{c}(z)\right)_{c}$ config. satisfies a recursion of the form

$$
\mathbf{F}(z)=P(z, \mathbf{F}(z))
$$

Definition.

A completion of a configuration c is a consistent arrangement on 'one side' of the corresponding adhesion set.

Observation.

Let $F_{c}(z)$ be the generating function counting c-completions of a given length.

Then $\mathbf{F}(z)=\left(F_{c}(z)\right)_{c \text { config. }}$. satisfies a recursion of the form

$$
\mathbf{F}(z)=P(z, \mathbf{F}(z))
$$

Definition.

The generating function of a sequence a_{n} is the function

$$
F(z)=\sum_{i=0}^{\infty} a_{n} z^{n}
$$

- recursion for a_{n} gives recursion for $F(z)$
- singularities of $F(z)$ provide information about asymptotics of a_{n}

$\mu=\frac{1}{z^{*}}$, where z^{*} is the smallest root of $4 z^{5}+8 z^{4}+8 z^{3}+4 z^{2}-1$

Definition.

A completion of a configuration c is a consistent arrangement on 'one side' of the corresponding adhesion set.

Observation.

Let $F_{c}(z)$ be the generating function counting c-completions of a given length.

Then $\mathbf{F}(z)=\left(F_{c}(z)\right)_{c \text { config. }}$. satisfies a recursion of the form

$$
\mathbf{F}(z)=P(z, \mathbf{F}(z))
$$

What is the number c_{n} of self-avoiding walks of length n ?

Theorem.
The generating function $F(z)=\sum_{n \geq 0} c_{n} z^{n}$ is algebraic.
L. \& Lindorfer 2023

Proof.
The function P in the recursion $\mathbf{F}(z)=P(z, \mathbf{F}(z))$ is a polynomial.
Moreover, there is some polynomial Q such that $F(z)=Q(z, \mathbf{F}(z))$.

How far apart are the endpoints of a 'typical' self-avoiding walk?

Theorem.

The self avoiding walk on a quasi-transitive graph with more than one end is ballistic, that is, the endpoints are with high probability linearly far apart.
L., Lindorfer, Panagiotis 2023+

Definition.

A configuration is called

- U-configuration if entry and exit directions point to the same side
- I-configuration if entry and exit directions point to different sides

Definition.

A configuration is called

- U-configuration if entry and exit directions point to the same side
- I-configuration if entry and exit directions point to different sides

How far apart are the endpoints of a 'typical' self-avoiding walk?

Theorem.

The self avoiding walk on a quasi-transitive graph with more than one end is ballistic, that is, the endpoints are with high probability linearly far apart.
L., Lindorfer, Panagiotis 2023+

Proof sketch.

Step 1: Show that most self avoiding walks cross at least one adhesion set.
Step 2: Show that I-configurations have more completions than U-configurations.

Step 1: Show that most self avoiding walks cross at least one adhesion set.

Step 1: Show that most self avoiding walks cross at least one adhesion set.

Step 1: Show that most self avoiding walks cross at least one adhesion set.

Step 2: Show that I-configurations have more completions than U-configurations.

Step 2: Show that I-configurations have more completions than U-configurations.

Step 2: Show that I-configurations have more completions than U-configurations.

Step 2: Show that I-configurations have more completions than U-configurations.

How far apart are the endpoints of a 'typical' self-avoiding walk?

Theorem.

The self avoiding walk on a quasi-transitive graph with more than one end is ballistic, that is, the endpoints are with high probability linearly far apart.
L., Lindorfer, Panagiotis 2023+

Proof sketch.

Step 1: Show that most self avoiding walks cross at least one adhesion set.
Step 2: Show that I-configurations have more completions than U-configurations.

