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Mathematicians are like Frenchmen:
whatever you say to them they translate into their
own language and forthwith it is something entirely
di↵erent. Johann Wolfgang von Goethe
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Two basic questions

What is the number cn of self-avoiding walks of length n?

How far apart are the endpoints of a ‘typical’ self-avoiding walk?
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Duminil-Copin & Smirnov 2012

This appears to be very hard, can we make it easier?
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Theorem.

Let G be a quasi-transitive, locally finite

graph with more than one end.

Then G has a ‘nice’ tree decomposition.

Dunwoody, Krön 2015

Carmesin, Hamann, Miraftab 2021

Hamann, L., Miraftab, Rühmann 2022

L., Lindorfer, Panagiotis 2023+
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Definition.

The arrangement corresponding to a

self avoiding walk consists of:

I shapes on ‘parts’

I configurations on ‘adhesion sets’

Observation.

There are as many self-avoiding walks

as there are consistent arrangements.
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Definition.

A completion of a configuration c is a

consistent arrangement on ‘one side’ of

the corresponding adhesion set.

Observation.

Let Fc(z) be the generating function

counting c-completions of a given

length.

Then F(z) = (Fc(z))c config. satisfies a

recursion of the form

F(z) = P(z ,F(z))
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Definition.

The generating function of a sequence an is

the function

F (z) =
1X

i=0

anz
n

I recursion for an gives recursion for F (z)

I singularities of F (z) provide information

about asymptotics of an
µ =

1

z⇤ , where z⇤ is the smallest root

of 4z5 + 8z4 + 8z3 + 4z2 � 1
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What is the number cn of self-avoiding walks of length n?

Theorem.

The generating function F (z) =
P

n�0
cnzn is algebraic. L. & Lindorfer 2023

Proof.

The function P in the recursion F(z) = P(z ,F(z)) is a polynomial.

Moreover, there is some polynomial Q such that F (z) = Q(z ,F(z)).



How far apart are the endpoints of a ‘typical’ self-avoiding walk?

Theorem.

The self avoiding walk on a quasi-transitive graph with more than one end is ballistic,

that is, the endpoints are with high probability linearly far apart.

L., Lindorfer, Panagiotis 2023+

Proof sketch.

Step 1: Show that most self avoiding walks cross at least one adhesion set.

Step 2: Show that I-configurations have more completions than U-configurations
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A configuration is called

I U-configuration if entry and exit

directions point to the same side

I I-configuration if entry and exit

directions point to di↵erent sides
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