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Mathematicians are like Frenchmen:

whatever you say to them they translate into their
own language and forthwith it is something entirely
different. Johann Wolfgang von Goethe
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Two basic questions

What is the number ¢, of self-avoiding walks of length n?

How far apart are the endpoints of a ‘typical’ self-avoiding walk?

%This appears to be very hard, can we make it easier?

2" < ¢y, <4-3071 V2" <cp<32nt
1= 2.63815853032790.. . . p=vV2+2

Duminil-Copin & Smirnov 2012
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e.g. Alm & Jansen 1990
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w= Zi* where z* is the smallest root of

47° +82% + 823+ 422 -1

e.g. Miiller & Gilch 2017



Theorem.

Let G be a quasi-transitive, locally finite
graph with more than one end.

Then G has a ‘nice’ tree decomposition.

Dunwoody, Krén 2015

Carmesin, Hamann, Miraftab 2021
Hamann, L., Miraftab, Riihmann 2022
L., Lindorfer, Panagiotis 2023+




Definition.
The arrangement corresponding to a
self avoiding walk consists of:

» shapes on ‘parts’

» configurations on ‘adhesion sets’

Observation.
There are as many self-avoiding walks
as there are consistent arrangements.
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Definition.

A completion of a configuration c is a
consistent arrangement on ‘one side’ of
the corresponding adhesion set.

Observation.

Let F.(z) be the generating function
counting c-completions of a given
length.

Then F(z) = (Fc(2))c config. Satisfies a
recursion of the form

F(z) = P(z,F(2))
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Definition.
The generating function of a sequence a, is
the function

F(z) = i anz"
i=0

» recursion for a, gives recursion for F(z)

» singularities of F(z) provide information p= L, where z* is the smallest root
about asymptotics of a, Ozf 475 1 874 +823+422 -1
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What is the number ¢, of self-avoiding walks of length n?

Theorem.
The generating function F(z) =), -, cnz" is algebraic. L. & Lindorfer 2023

Proof.
The function P in the recursion F(z) = P(z,F(z)) is a polynomial.

Moreover, there is some polynomial Q such that F(z) = Q(z, F(2)).
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How far apart are the endpoints of a ‘typical’ self-avoiding walk?

Theorem.
The self avoiding walk on a quasi-transitive graph with more than one end is ballistic,

that is, the endpoints are with high probability linearly far apart.
L., Lindorfer, Panagiotis 2023+
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Proof sketch.
Step 1: Show that most self avoiding walks cross at least one adhesion set.

Step 2: Show that |-configurations have more completions than U-configurations. [
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