Tensor representation of semifields and commuting polarities

Stefano Lia
$45 A C C$ - Perth
joint work with John Sheekey
University College Dublin

General Gist

- Part one:
- some must-know about finite semifields
- the Segre and the cyclic models for finite semifields, why Segre has been used more and why the cyclic looks good to us, namely why it deserves more attentions
- Part two:
- quasi-polar spaces a.k.a. (in this case) strongly regular graphs with a nice automorhpism group from finite geometry
- a nice picture

General Gist

- Part one:
- some must-know about finite semifields
- the Segre and the cyclic models for finite semifields, why Segre has been used more and why the cyclic looks good to us, namely why it deserves more attentions
- Part two:
- quasi-polar spaces a.k.a. (in this case) strongly regular graphs with a nice automorhpism group from finite geometry
- a nice picture

Rorschach test

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

```
Loosely speaking, a finite semifield is a vector space of finite size, in which we can multiply
vectors, and we don't allow zero-divisors.
Then we can assume }\mathbb{S}\simeq\mp@subsup{\mathbb{F}}{q}{n}\mathrm{ , and a common thing is to identify }\mathbb{S}\mathrm{ with }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{n}}{}\mathrm{ and define a
new product between elements which coincides with the classical if they are in \mathbb{F}}\mp@subsup{|}{q}{
Example
Generalized twisted fields (Albert, 1965): (\mathbb{F}q\mp@subsup{q}{}{n},+,0) with
```

$x \circ y=x y-c x^{q^{i}} y^{q^{j}}$
$N(c) \neq 1$

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Loosely speaking, a finite semifield is a vector space of finite size, in which we can multiply vectors, and we don't allow zero-divisors.
Then we can assume $\mathbb{S} \simeq \mathbb{F}_{q}^{n}$, and a common thing is to identify \mathbb{S} with $\mathbb{F}_{q}{ }^{n}$ and define a
new product between elements which coincides with the classical if they are in \mathbb{F}_{q}.

Example
Generalizerl twisted fields (Albert, 1965): $\left(\mathbb{F}_{q^{n},+}, 0\right)$ with

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Loosely speaking, a finite semifield is a vector space of finite size, in which we can multiply vectors, and we don't allow zero-divisors.
Then we can assume $\mathbb{S} \simeq \mathbb{F}_{q}^{n}$, and a common thing is to identify \mathbb{S} with $\mathbb{F}_{q^{n}}$ and define a new product between elements which coincides with the classical if they are in \mathbb{F}_{q}.

Finite semi-fields

Definition

A finite semi-field $(\mathbb{S},+, \circ)$ is a finite not-necessarily commutative, not-necessarily associative division algebra.

Loosely speaking, a finite semifield is a vector space of finite size, in which we can multiply vectors, and we don't allow zero-divisors.
Then we can assume $\mathbb{S} \simeq \mathbb{F}_{q}^{n}$, and a common thing is to identify \mathbb{S} with $\mathbb{F}_{q^{n}}$ and define a new product between elements which coincides with the classical if they are in \mathbb{F}_{q}.

Example

Generalized twisted fields (Albert, 1965): $\left(\mathbb{F}_{q^{n}},+, \circ\right)$ with

$$
x \circ y=x y-c x^{q^{i}} y^{q^{j}}
$$

$N(c) \neq 1$

About equivalence

Definition

Two semi-fields $\left(\mathbb{S}_{1},+, \circ\right),\left(\mathbb{S}_{2},+, \tilde{o}\right)$ are equivalent (isotopic) if there are THREE \mathbb{F}_{q}-linear bijections $A, B, C: \mathbb{S}_{1} \mapsto \mathbb{S}_{2}$ such that:

$$
A(x \circ y)=B(x) \tilde{o} C(y)
$$

Why not simply isomorphism?

Semifields correspond to certain translation planes (planes of type V in Lenz classification), and the natural equivalence of these planes correspond precisely to this equivalence.

About equivalence

Definition

Two semi-fields $\left(\mathbb{S}_{1},+, \circ\right),\left(\mathbb{S}_{2},+, \tilde{o}\right)$ are equivalent (isotopic) if there are THREE \mathbb{F}_{q}-linear bijections $A, B, C: \mathbb{S}_{1} \mapsto \mathbb{S}_{2}$ such that:

$$
A(x \circ y)=B(x) \tilde{o} C(y)
$$

Why not simply isomorphism?
Semifields correspond to certain translation planes (planes of type V in Lenz classification), and the natural equivalence of these planes correspond precisely to this equivalence.

About equivalence

Definition

Two semi-fields $\left(\mathbb{S}_{1},+, \circ\right),\left(\mathbb{S}_{2},+, \tilde{o}\right)$ are equivalent (isotopic) if there are THREE \mathbb{F}_{q}-linear bijections $A, B, C: \mathbb{S}_{1} \mapsto \mathbb{S}_{2}$ such that:

$$
A(x \circ y)=B(x) \tilde{o} C(y)
$$

Why not simply isomorphism?
Semifields correspond to certain translation planes (planes of type V in Lenz classification), and the natural equivalence of these planes correspond precisely to this equivalence.

Tensor representation of semifields

The set of all bilinear multiplications on $V=\mathbb{F}_{q}^{n}$ is $\operatorname{Hom}(V \otimes V, V)$, which is isomorphic to $V^{\vee} \otimes V^{\vee} \otimes V$. Namely, each tensor defines an algebra, and vice-versa. The multiplication associated with the tensor $T \in V^{\vee} \otimes V^{\vee} \otimes V$ is denoted by \circ_{T} and defined on the pure tensor $a^{\vee} \otimes b^{\vee} \otimes c$ by $x \circ_{T} y=a^{\vee}(x) b^{\vee}(y) c$.

The natural action of $\operatorname{Sym}(3)$ on threefold tensors gives rise to the Knuth orbit, which permutes the roles of a, b and c, and provides up to six non-isotopic multiplications.
$\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ acts on $V \otimes V \otimes V$, via
namely, on the associated multiplication $\left(x \circ_{T} y\right)^{(f, g, h)}=\left(x^{f} \circ_{T} y^{g}\right)^{h}$
A more general action is given by the group GL(V) $2 \mathrm{Sym}(3)$

Tensor representation of semifields

The set of all bilinear multiplications on $V=\mathbb{F}_{q}^{n}$ is $\operatorname{Hom}(V \otimes V, V)$, which is isomorphic to $V^{\vee} \otimes V^{\vee} \otimes V$. Namely, each tensor defines an algebra, and vice-versa. The multiplication associated with the tensor $T \in V^{\vee} \otimes V^{\vee} \otimes V$ is denoted by \circ_{T} and defined on the pure tensor $a^{\vee} \otimes b^{\vee} \otimes c$ by $x \circ_{T} y=a^{\vee}(x) b^{\vee}(y) c$.

The natural action of $\operatorname{Sym}(3)$ on threefold tensors gives rise to the Knuth orbit, which permutes the roles of a, b and c, and provides up to six non-isotopic multiplications.
$\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ acts on $V \otimes V \otimes V$, via

$$
\left(a^{\vee} \otimes b^{\vee} \otimes c\right)^{(f, g, h)}:=f(a)^{\vee} \otimes g(b)^{\vee} \otimes h(c)
$$

namely, on the associated multiplication $\left(x \circ_{T} y\right)^{(f, g, h)}=\left(x^{f} \circ_{T} y^{g}\right)^{h}$.
A more general action is given by the group GL(V) $\imath \operatorname{Sym}(3)$.

Tensor representation of semifields

The set of all bilinear multiplications on $V=\mathbb{F}_{q}^{n}$ is $\operatorname{Hom}(V \otimes V, V)$, which is isomorphic to $V^{\vee} \otimes V^{\vee} \otimes V$. Namely, each tensor defines an algebra, and vice-versa. The multiplication associated with the tensor $T \in V^{\vee} \otimes V^{\vee} \otimes V$ is denoted by \circ_{T} and defined on the pure tensor $a^{\vee} \otimes b^{\vee} \otimes c$ by $x \circ_{T} y=a^{\vee}(x) b^{\vee}(y) c$.

The natural action of $\operatorname{Sym}(3)$ on threefold tensors gives rise to the Knuth orbit, which permutes the roles of a, b and c, and provides up to six non-isotopic multiplications.
$\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ acts on $V \otimes V \otimes V$, via

$$
\left(a^{\vee} \otimes b^{\vee} \otimes c\right)^{(f, g, h)}:=f(a)^{\vee} \otimes g(b)^{\vee} \otimes h(c)
$$

namely, on the associated multiplication $\left(x \circ_{T} y\right)^{(f, g, h)}=\left(x^{f} \circ_{T} y^{g}\right)^{h}$.
A more general action is given by the group GL(V) $\imath \operatorname{Sym}(3)$.

Nota bene

Finite semifields are those algebras without zero-divisors, and correspond to those tensors which are non-singular.

Contractions and non-singularity.

Tensor Contraction

The contraction of $T \in V_{1} \otimes \ldots \otimes V_{m}$ with $u_{i} \in V_{i}^{*}$ is a tensor in $V_{1} \otimes \ldots \otimes \hat{V}_{i} \otimes \ldots \otimes V_{m}$, defined by

$$
u_{i}\left(v_{1} \otimes \ldots \otimes v_{m}\right)=u_{i}\left(v_{i}\right) v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes \ldots \otimes v_{m}
$$

Contraction Space

The i-th contraction space is the subspace $C_{i}(T):=\left\{u_{i}(T): u_{i} \in V_{i}^{*}\right\}$.

Theorem

Two tensors $T_{1}, T_{2} \in V_{1} \otimes \ldots \otimes V_{m}$ are equivalent if and only if their i-th contraction spaces $C_{i}\left(T_{1}\right)$ and $C_{i}\left(T_{2}\right)$ are equivalent.

Definition

A vector (1-tensor) is non-singular if it is non-zero. Recursively, a tensor is non-singular if every contraction of it is non-singular.

Contractions and non-singularity in layman terms

Contracting a matrix (2-tensor) means taking a linear combination of its rows/columns (1-tensors). So you get a vector and you have 2 ways to do it. Contracting a t-fold tensor means taking linear combinations of its slices, and you can do it in t ! ways. Instead of studying the tensor you can study the subspace of its contractions "along one direction".

Is this good news?
It is a trade, we can study equivalence in a smaller space, but studying higher dimensional objects. In general the tensor and it's contraction live in different spaces.

[^0]
Contractions and non-singularity in layman terms

Contracting a matrix (2-tensor) means taking a linear combination of its rows/columns (1-tensors). So you get a vector and you have 2 ways to do it. Contracting a t-fold tensor means taking linear combinations of its slices, and you can do it in t ! ways. Instead of studying the tensor you can study the subspace of its contractions "along one direction".

Is this good news?
It is a trade, we can study equivalence in a smaller space, but studying higher dimensional objects. In general the tensor and it's contraction live in different spaces.

[^1]
Contractions and non-singularity in layman terms

Contracting a matrix (2-tensor) means taking a linear combination of its rows/columns (1-tensors). So you get a vector and you have 2 ways to do it. Contracting a t-fold tensor means taking linear combinations of its slices, and you can do it in t ! ways. Instead of studying the tensor you can study the subspace of its contractions "along one direction".

Is this good news?
It is a trade, we can study equivalence in a smaller space, but studying higher dimensional objects. In general the tensor and it's contraction live in different spaces.

Definition

A vector (1-tensor) is non-singular if it is non-zero. Recursively, a tensor is non-singular if every contraction of it is non-singular.

The first Segre of the day

The (Corrado) Segre embedding embeds in the natural way $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ into $\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \simeq \mathbb{F}_{q}^{n^{3}}$. Going projective, we see tensors as points of $\operatorname{PG}\left(n^{3}-1, q\right)$. The Segre variety is the set of pure tensors.

The first Segre of the day

The (Corrado) Segre embedding embeds in the natural way $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ into $\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \simeq \mathbb{F}_{q}^{n^{3}}$. Going projective, we see tensors as points of $\operatorname{PG}\left(n^{3}-1, q\right)$. The Segre variety is the set of pure tensors.

Nota bene

The action of $\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ on tensors induces an action of points of $\mathrm{PG}\left(n^{3}-1, q\right)$ given by collineations.

The first Segre of the day

The (Corrado) Segre embedding embeds in the natural way $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ into $\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{n} \simeq \mathbb{F}_{q}^{n^{3}}$. Going projective, we see tensors as points of $\operatorname{PG}\left(n^{3}-1, q\right)$. The Segre variety is the set of pure tensors.

Nota bene

The action of $\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ on tensors induces an action of points of $\mathrm{PG}\left(n^{3}-1, q\right)$ given by collineations.

Intermezzo

Corrado Segre is Beniamino Segre's uncle and PhD advisor. The Segre-type theorems Geertrui will talk about after lunch are Beniamino's.

The cyclic model for threefold tensors

- represent $V \simeq \mathbb{F}_{q}^{n}$ as $\mathbb{F}_{q^{n}}$;
- then the elements $a^{\vee}, b^{\vee} \in \mathbb{F}_{q^{n}}^{\vee}$, duals of $a, b \in \mathbb{F}_{q^{n}}$, acts as the trace, $a^{\vee}(x)=\operatorname{Tr}(a x)$
- the multiplication \circ_{T} defined by $T=a^{\vee} \otimes b^{\vee} \otimes c$ becomes:

$$
x \circ_{T} y=\operatorname{Tr}(a x) \operatorname{Tr}(b y) c .
$$

- if you write $\hat{v}=\left(v, v^{q}, \ldots, v^{q^{n-1}}\right)$ and $M_{T}=\hat{a}^{t} \hat{b} c$, the multiplication can be written as

$$
x \circ_{T} y=\hat{x}^{t r} M_{T} \hat{y}
$$

Cyclic model

We can represent tensors in $(\mathbb{Q} n) \otimes 3$ as matrices $n \times n$ over $\mathbb{F}_{q} n$ and as points of $\mathrm{PG}\left(n^{2}-1, q^{n}\right)$.

> In the cyclic model, the group $G L(V) \times G L(V) \times G L(V)$ does not induce collineations of $\operatorname{PG}\left(n^{2}-1, q^{n}\right)$. The third $\mathrm{GL}(V)$ is problematic.

The cyclic model for threefold tensors

- represent $V \simeq \mathbb{F}_{q}^{n}$ as $\mathbb{F}_{q^{n}}$;
- then the elements $a^{\vee}, b^{\vee} \in \mathbb{F}_{q^{n}}^{\vee}$, duals of $a, b \in \mathbb{F}_{q^{n}}$, acts as the trace, $a^{\vee}(x)=\operatorname{Tr}(a x)$
- the multiplication \circ_{T} defined by $T=a^{\vee} \otimes b^{\vee} \otimes c$ becomes:

$$
x \circ_{T} y=\operatorname{Tr}(a x) \operatorname{Tr}(b y) c .
$$

- if you write $\hat{v}=\left(v, v^{q}, \ldots, v^{q^{n-1}}\right)$ and $M_{T}=\hat{a}^{t} \hat{b} c$, the multiplication can be written as

$$
x \circ_{T} y=\hat{x}^{t r} M_{T} \hat{y}
$$

Cyclic model

We can represent tensors in $\left(\mathbb{F}_{q}^{n}\right)^{\otimes 3}$ as matrices $n \times n$ over $\mathbb{F}_{q^{n}}$ and as points of $\mathrm{PG}\left(n^{2}-1, q^{n}\right)$.

In the cyclic model, the group $\mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V}) \times \mathrm{GL}(\mathrm{V})$ does not induce collineations of $\operatorname{PG}\left(n^{2}-1, q^{n}\right)$. The third GL (V) is problematic.

Nota bene

Non-singularity of the matrix of the cyclic model does not mean nonsingularity of the tensor.

The trace provides the functional $T^{\vee} \in \mathrm{V} \otimes \mathrm{V} \otimes \mathrm{V}^{\vee}$, associated with T :

$$
\mathrm{T}(x, y, z)=\operatorname{Tr}(x \circ y z)=\operatorname{Tr}\left(\sum_{i, j} \alpha_{i, j} x^{q^{i}} y^{q^{j}} z\right)
$$

where $\left(\alpha_{i, j}\right)=M_{T}$.
T is non-singular if and only if this map is non zero for any non zero x, y, z. Contracting on the third component, we obtain a multiple of a Dickson matrix, namely a matrix of the type

$$
\left(\begin{array}{c}
a \\
a^{q} \\
\cdots \\
a^{q^{n-1}}
\end{array}\right)\left(\begin{array}{llll}
b & b^{q} & \ldots & b^{q^{n-1}}
\end{array}\right)
$$

The set of all contractions forms a subgeometry $\Sigma \simeq \operatorname{PG}\left(n^{2}-1, q\right)$.

Theorem (LS-Sheekey)

The contraction space $C_{3}(T)$ of a tensor T is the unique subspace of Σ of minimal dimension whose extension to Σ^{*} contains the point $P=\langle T\rangle$.

Takeaways:

- Semifields correspond to non-singular tensors of format $n \times n \times n$;
- you can embed these tensors in a projective space in several ways;
- the "natural" embedding is the Corrado Segre (the uncle) embedding
- good thing: here all the symmetries of the tensors are collineation of the space
- bad thing: studying non-singularity is still difficult, the contraction spaces do not naturally live in the same space
- the cyclic model has been used by people studying semifields, but not in the context of associated tensors.
- bad thing: doesn't work for general format of tensors
- bad thing: not all the symmetries of the tensors are collineation of the space
- very good thing: the contraction spaces live in the same space and have a nice geometric interpretation
- positive turn of the bad thing: we now understand how the third GL (V) behaves (fixes the contraction space, and permutes the points in the extension of this space)

Part two: quasi-polar spaces and a nice picture

Definition

Quasi-quadrics and quasi-hermitian varieties (quasi-polar spaces) are sets of points of a projective space with same size and same intersection numbers as the corresponding (non-degenerate) polar space. In particular they are two-character set (w.r.t. hyperplanes).

We like it because

- few characters is an extremal behaviour.
- quadrics and hermitian varieties are probably the nicest objects, so if you look like one of them, you look cool.
- a good deal of interest is due to their link with strongly regular graphs.

Linear representation graph

Linear representation graph

Take your two character set $S \subseteq \Sigma=\mathrm{PG}(n-1, q)$ and embed Σ as hyperplane at infinity in $\operatorname{PG}(n, q)$. The graph $\Gamma(S)$ with vertices the affine points of $\operatorname{PG}(n, q)$ and an arc if the line through them has a point of S at infinity is strongly regular with parameters $\left(q^{n}, k, \lambda, \mu\right)$ with $k=|S|(q-1), \lambda=k-1+\left(k-q w_{1}+1\right)\left(k-q w_{2}+1\right)$ and $\mu=k+\left(k-q w_{1}\right)\left(k-q w_{2}\right)$, where w_{1}, w_{2} are the two characters.

Theorem (Cara-Rottey-Van de Voorde 2014)

Under reasonable and mild conditions all the isomorphisms between two linear representation graphs $\Gamma\left(S_{1}\right), \Gamma\left(S_{2}\right)$ are those coming from collineations.

As a consequence: new quasi-polar spaces \Longrightarrow new non-isomorphic SRG with the same parameters.
If they also have some automorphisms \Longrightarrow new non-isomorphic SRG with the same parameters and same automorphisms.

Non-singular $2 \times 2 \times 2$ tensors

In the first part we said that a tensor T, represented in the cyclic model by the matrix ($\alpha_{i, j}$), is non-singular if and only if

$$
\mathrm{T}(x, y, z)=\operatorname{Tr}(x \circ y z)=\operatorname{Tr}\left(\sum_{i, j} \alpha_{i, j} x^{q^{i}} y^{q^{j}} z\right) \neq 0
$$

for any non zero x, y, z.
For $n=2$ and $T=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, this is equivalent to ask that:

where $Q=\alpha \delta-\beta \gamma$ and $H=\alpha^{q+1}-\beta^{q+1}-\gamma^{q+1}+\delta^{q+1}$ and $z \in \mathbb{F}_{q^{n}}$

Non-singular $2 \times 2 \times 2$ tensors

In the first part we said that a tensor T, represented in the cyclic model by the matrix ($\alpha_{i, j}$), is non-singular if and only if

$$
\mathrm{T}(x, y, z)=\operatorname{Tr}(x \circ y z)=\operatorname{Tr}\left(\sum_{i, j} \alpha_{i, j} x^{q^{i}} y^{q^{j}} z\right) \neq 0
$$

for any non zero x, y, z.
For $n=2$ and $T=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, this is equivalent to ask that:

$$
\left\{\begin{array}{l}
Q+H z+Q^{q} z^{2} \neq 0 \\
z^{q+1}=1
\end{array}\right.
$$

where $Q=\alpha \delta-\beta \gamma$ and $H=\alpha^{q+1}-\beta^{q+1}-\gamma^{q+1}+\delta^{q+1}$ and $z \in \mathbb{F}_{q^{n}}$.

Commuting polarities

Q and H from the system define a quadric \mathcal{Q}^{+}and an Hermitian surface \mathcal{H}.

Why commuting polarities in the title?

\mathcal{Q}^{+}and \mathcal{H} are in permutable position, namely \perp_{Q} and \perp_{H} are commuting polarities.

Two commuting polarities \perp_{1} and \perp_{2} determine an involution $\rho=\perp_{1} \perp_{2}$ which in turn fix a subgeometry Σ, which coincides with the one given by Dickson matrices of the cyclic model.

$$
\Sigma \cap \mathcal{H}=\Sigma \cap \mathcal{Q}^{+}=\mathcal{Q}_{0}^{+}
$$

\mathcal{Q}_{0}^{+}is an hyperbolic quadric of the subgeometry Σ. If we look at the orbits of (a subgroup of) the stabiliser of \mathcal{Q}_{0}^{+}, a lot of interesting geometry arises.
The group G we want is isomorphic to $\operatorname{PCSO}^{+}(4, q)$ and consists of collineations of the form

$$
v \mapsto A v B \quad \text { or } \quad X \mapsto A v^{T} B
$$

where A and B are invertible 2×2 Dickson matrices with coefficients in $\mathbb{F}_{q^{2}}$ whose determinant is a square of \mathbb{F}_{q}.

Study of the system

Lemma (SL, John Sheekey)

$P=(\alpha, \beta, \gamma, \delta)$ is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$.

Nota bene:

P non-singular if and only if each of it's contractions non-singular. In $\mathrm{PG}\left(3, q^{2}\right)$ each point lies on precisely one extended Σ-line.
This implies that the contraction $C(P)$ is that unique line.

```
Non-singular points }P\mathrm{ are points not in }\Sigma\mathrm{ , lying on extended sublines external to }\mp@subsup{\mathcal{Q}}{0}{+
```

Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{n}^{+}-tangent

Study of the system

Lemma (SL, John Sheekey)

$P=(\alpha, \beta, \gamma, \delta)$ is non-singular if and only if $\Delta(P) \in \square_{q}^{\times}$, where $\Delta=H^{2}-4 Q^{q+1}$.

Nota bene:

P non-singular if and only if each of it's contractions non-singular. In $\mathrm{PG}\left(3, q^{2}\right)$ each point lies on precisely one extended Σ-line.
This implies that the contraction $C(P)$ is that unique line.

Corollary-SL, Sheekey

Non-singular points P are points not in Σ, lying on extended sublines external to \mathcal{Q}_{0}^{+}. Equivalently, non-singular points are points not in Σ and not on extended \mathcal{Q}_{0}^{+}-tangent planes.

Stabiliser of Q_{0}

G acts on $\mathcal{H} \backslash \mathcal{Q}$ with two orbits, H_{1} and H_{2}
G also stabilises the following varieties:

$$
\mathcal{S}_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

The surfaces \mathcal{S}_{t} partition the points outside of $H \cup Q \cup \Sigma$. The points of $\mathcal{S}_{t} \backslash \mathcal{H} \cap \mathcal{Q}^{+}$ correspond to non-singular tensors if and only if $1-1 / t^{2} \in \square_{q}^{\times}$
\Rightarrow two families of surfaces:

- the non-singular \mathcal{S}_{i}^{1}, with $1-1 / i^{2} \in \square_{q}^{\times}$
- the singular \mathcal{S}_{j}^{2}, with $1-1 / j^{2} \notin \square_{q}^{\times}$

Stabiliser of Q_{0}

G acts on $\mathcal{H} \backslash \mathcal{Q}$ with two orbits, H_{1} and H_{2}
G also stabilises the following varieties:

$$
\mathcal{S}_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

The surfaces \mathcal{S}_{t} partition the points outside of $H \cup Q \cup \Sigma$. The points of $\mathcal{S}_{t} \backslash \mathcal{H} \cap \mathcal{Q}^{+}$ correspond to non-singular tensors if and only if $1-1 / t^{2} \in \square_{q}^{\times}$

\Longrightarrow two families of surfaces:

- the non-singular \mathcal{S}_{i}^{1}, with $1-1 / i^{2} \in \square_{q}^{\times}$
- the singular \mathcal{S}_{j}^{2}, with $1-1 / j^{2} \notin \square_{q}^{\times}$

Stabiliser of Q_{0}

G acts on $\mathcal{H} \backslash \mathcal{Q}$ with two orbits, H_{1} and H_{2}
G also stabilises the following varieties:

$$
\mathcal{S}_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

The surfaces \mathcal{S}_{t} partition the points outside of $H \cup Q \cup \Sigma$. $\stackrel{\text { correspond to non-singular tel }}{\Longrightarrow}$ two families of surfaces:

- the non-singular \mathcal{S}_{i}^{1}, with $1-1 / i^{2} \in \square_{q}^{\times}$;
- the cingular \mathcal{S}^{2} with $1-1 / j^{2} \notin \square_{Q}^{\times}$

Stabiliser of Q_{0}

G acts on $\mathcal{H} \backslash \mathcal{Q}$ with two orbits, H_{1} and H_{2}
G also stabilises the following varieties:

$$
\mathcal{S}_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

The surfaces \mathcal{S}_{t} partition the points outside of $H \cup Q \cup \Sigma$. The points of $\mathcal{S}_{t} \backslash \mathcal{H} \cap \mathcal{Q}^{+}$ correspond to non-singular tensors if and only if $1-1 / t^{2} \in \square_{q}^{\times}$.

- the non-singular \mathcal{S}_{i}^{1}, with $1-1 / i^{2} \in \square_{q}^{\times}$;
- the singular S_{j}^{2} with $1-1 / j^{2} \notin \square_{q}^{\times}$

Stabiliser of Q_{0}

G acts on $\mathcal{H} \backslash \mathcal{Q}$ with two orbits, H_{1} and H_{2}
G also stabilises the following varieties:

$$
\mathcal{S}_{t}:=\left\{\langle v\rangle: H-2 t Q^{\frac{q+1}{2}}=0\right\}
$$

The surfaces \mathcal{S}_{t} partition the points outside of $H \cup Q \cup \Sigma$. The points of $\mathcal{S}_{t} \backslash \mathcal{H} \cap \mathcal{Q}^{+}$ correspond to non-singular tensors if and only if $1-1 / t^{2} \in \square_{q}^{\times}$.
\Longrightarrow two families of surfaces:

- the non-singular \mathcal{S}_{i}^{1}, with $1-1 / i^{2} \in \square_{q}^{\times}$;
- the singular \mathcal{S}_{j}^{2}, with $1-1 / j^{2} \notin \square_{q}^{\times}$.

New quasi-Hermitian surfaces from the orbits of G

Theorem (SL-Sheekey)

For any pair of surfaces $\mathcal{S}_{i}^{1}, \mathcal{S}_{j}^{2}$, their join $\mathcal{S}_{i}^{1}, \cup \mathcal{S}_{j}^{2}$ is a quasi-hermitian surface, not isomorphic to any previous construction. These are roughly $q^{2} / 4$ new quasi-hermitian surfaces.

Observe that:

- We have a nice equation for $\mathcal{S}_{i}^{1}, \cup \mathcal{S}_{j}^{2}$, which is

$$
\left(H-2 i Q^{\frac{q+1}{2}}\right)\left(H-2 j Q^{\frac{q+1}{2}}\right)=0
$$

- from the equation it seems it is very close to an hermitian surface, we just added some perturbation
- these quasi-hermitian surfaces clearly have a group isomorphic to $\operatorname{PCSO}^{+}(4, q)$ as automorphism group
- The picture still requires more explorations: understanding non-singular sublines in our picture implies some understanding of the four tensors, whose contractions are non-singular-sublines. This would have a major impact on semifields.
- Is this a happy island or also the general dimension case is so full of nice geometry? We do believe that the quasi-Hermitian variety will occur in higher dimensions (so new strongly regular graphs).
- There are some more geometrical structures related, among which a partition of the subgeometry in quadrics..the picture is much more rich!

[^0]: Deimition
 A vector (1-tensor) is non-singular if it is non-zero. Recursively, a tensor is non-singular if every contraction of it is non-singular.

[^1]: Definition
 A vector (1-tensor) is non-singular if it is non-zero. Recursively, a tensor is non-singular if every contraction of it is non-singular.

