Universality for graphs of bounded degeneracy

Anita Liebenau UNSW Sydney
j/w Peter Allen and Julia Böltcher

4SACC @UWA in Perth
11 December 2023

Universality

- H is a subgraph of ϵ if there is an injective $\varphi: V(H) \rightarrow V(G)$ such that $u \nu \in E(H) \quad \Longrightarrow \quad \varphi(u) \varphi(\nu) \in E(G)$
- G is universal for \mathscr{H} if $H \subseteq G$ for all $H \in \mathscr{H}$

Universality

- H is a subgraph of G if there is an infective $\varphi: V(H) \rightarrow V(G)$ such that

$$
u v \in E(H) \quad \Longrightarrow \quad \varphi(u) \varphi(v) \in E(G)
$$

- G is universal for \mathscr{H} if $H \subseteq G$ for all $H \in \mathscr{H}$
- e.g. K_{n} is universal for $\{$ graphs on $\leq n$ vertices\}
- e.g. if G has $o(n \log n)$ edges, then it is not universal for $\{n$-vertex trees $\}$

Universality

- H is a subgraph of G if there is an infective $\varphi: V(H) \rightarrow V(G)$ such that $u \nu \in E(H) \Longrightarrow \varphi(u) \varphi(v) \in E(G)$
- G is universal for \mathscr{H} if $H \subseteq G$ for all $H \in \mathscr{H}$
- e.g. K_{n} is universal for $\{$ graphs on $\leq n$ vertices $\}$
- e.g. if G has $o(n \log n)$ edges, then it is not universal for $\{n$-vertex trees $\}$ Why?
- For every $i=1,2, \ldots$. there is a tree with i vertices of degree $\sim n / i$

- If G universal then its degree sequence is at least $(n, n / 2, n / 3, \ldots)$
- So $e(G) \geq \frac{1}{2} \sum_{i=1}^{n} \frac{n}{i}=\Omega(n \log n)$

What is $\min \{e(G): G$ is \mathscr{H}-universal $\}$?

Chung \& Graham 1983

- There is a graph with $O(n \log n)$ edges that is universal for $\mathscr{H}=\{n$-vertex trees $\}$.

What is $\min \{e(G): G$ is \mathscr{H}-universal $\}$?

Chung \& Graham 1983

- There is a graph with $O(n \log n)$ edges that is universal for $\mathscr{H}=\{n$-vertex trees $\}$.

Friedman \& Pippenger 1986

- There is a graph with $O(n)$ edges that is universal for $\mathscr{H}=\{n$-vertex trees of maximum degree $\Delta\}$.

What is $\min \{e(G): G$ is \mathscr{H}-universal $\} ?$

Chung \& Graham 1983

- There is a graph with $O(n \log n)$ edges that is universal for $\mathscr{H}=\{n$-vertex trees $\}$.

Friedman \& Pippenger 1986

- There is a graph with $O(n)$ edges that is universal for $\mathscr{H}=\{n$-vertex trees of maximum degree $\Delta\}$.

Aton \& Capalbo 2008

- There is a graph with $0\left(n^{2-2 / \Delta}\right)$ edges that is universal for $\mathscr{H}=\{n$-vertex graphs of maximum degree $\Delta\}$.
\rightarrow best possible order of magnitude

For which p is $G(N, p) \mathscr{H}$-universal?

- For some $p=\Theta(1 / n), G(C n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta):=\{n$-vertex trees of maximum degree $\Delta\}$.
- For some $p=\Theta(\log n / n), G(n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta)$.

For which p is $G(N, p) \mathscr{H}$-universal?

- For some $p=\Theta(1 / n), G(C n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta):=\{n$-vertex trees of maximum degree $\Delta\}$.
- For some $p=\Theta(\log n / n), G(n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta)$. Montgomery 2019

Alow, Capalbo, Kohayakawa, Rödl,

- For some $p=\tilde{\Theta}\left(n^{-1 / \Delta}\right), G((1+\varepsilon) n, p)$ Ruciński \& Szemerédi 2000 $\mathscr{H}_{\Delta}(n):=\{n$-vertex graphs of maximum degree $\Delta\}$.

For which p is $C(N, p) \mathscr{H}$-universal?

- For some $p=\Theta(1 / n), G(C n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta):=\{n$-vertex trees of maximum degree $\Delta\}$.
- For some $p=\Theta(\log n / n), G(n, p)$ is a.a.s. universal for $\mathscr{T}(n, \Delta)$.

Montgomery 2019
Alon, Capalbo, Kohayakawa, Rödl, - For some $p=\tilde{\Theta}\left(n^{-1 / \Delta}\right), G((1+\varepsilon) n, p)$ is a $\mathscr{H}_{\Delta}(n):=\{n$-vertex graphs of maximum degree $\Delta\}$.

Conlon, Ferber, Nenadov \&

- For some $p=\tilde{\Theta}\left(n^{-1 /(\Delta-1)}\right), G((1+\varepsilon) n, p)$ is a.a.s. $\mathscr{H}_{\Delta}(n)$-universal. Škorić 2017 $\rightarrow p=\Omega\left(n^{-2 /(\Delta+1)}\right)$ is necessary

D-degenerale graphs

- H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.

D-degenerale graphs

- H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.
- E.9. Erees are 1-degenerate.

D-degenerale graphs

- H is D-degenerate if one can order the vertices such that each vertex sends $\leq \mathrm{D}$ edges backwards.
- E.9. Erees are 1-degenerate.

- $\mathscr{H}(n, D):=\{n$-vertex graphs with degeneracy D$\}$
- $\mathscr{H}_{\Delta}(n, D):=\mathscr{H}_{\Delta}(n) \cap \mathscr{H}(n, D)$

D-degenerale graphs

- H is D-degenerate if one can order the vertices such that each vertex sends $\leq D$ edges backwards.
- E.9. trees are 1-degenerate.

- $\mathscr{H}(n, D):=\{n$-vertex graphs with degeneracy D$\}$
- $\mathscr{H}_{\Delta}(n, D):=\mathscr{H}_{\Delta}(n) \cap \mathscr{H}(n, D)$
- For some $p=\tilde{\Theta}\left(n^{-1 / 2 D}\right), G(n, p)$ is a.a.s. $\mathscr{H}_{\Delta}(n, D)$-universal. Ferber \& Nenadov 2018
- For some $p=\tilde{\Theta}\left(n^{-1 / D}\right), G((1+\varepsilon) n, p)$ is a.a.s. $\mathscr{H}_{\Delta}(n, D)$-universal.

D-degenerale graphs

- H is D-degenerate if one can order the vertices such that each vertex sends $\leq D$ edges backwards.
- E.9. trees are 1-degenerate.

- $\mathscr{H}(n, D):=\{n$-vertex graphs with degeneracy $D\}$
- $\mathscr{H}_{\Delta}(n, D):=\mathscr{H}_{\Delta}(n) \cap \mathscr{H}(n, D)$
- For some $p=\tilde{\Theta}\left(n^{-1 / 2 D}\right), G(n, p)$ is a.a.s. $\mathscr{H}_{\Delta}(n, D)$-universal. Ferber \& Nenadov 2018
- For some $p=\tilde{\Theta}\left(n^{-1 / D}\right), G((1+\varepsilon) n, p)$ is a.a.s. $\mathscr{H}_{\Delta}(n, D)$-universal.

Question (Aton 2019)
What is $\min \{e(G): G$ is \mathscr{H}-universal $\}$ for $\mathscr{H}=\mathscr{H}(n, D)$?

A counting lower bound

- Suppose G is $\mathscr{H}(n, D)$-universal.
- Count "full" D-degenerate graphs (in order) on [n]:

there are (at least) $\prod_{k=D+1}^{n}\binom{k-1}{D} \geq(c n / D)^{D n}$

A counting lower bound

- Suppose G is $\mathscr{H}(n, D)$-universal.
- Count "full" D-degenerate graphs (in order) on [n]:

B there are (at least) $\prod_{k=D+1}^{n}\binom{k-1}{D} \geq(c n / D)^{D n}$

- How many are there in G?
* Pick any Din edges and any ordering of the n vertices they span.
$\Rightarrow \operatorname{at~most}\binom{e(G)}{D n} n!\leq\left(\frac{e(G) \cdot e}{D n}\right)^{D n} n^{n}$

A counting lower bound

- Suppose G is $\mathscr{H}(n, D)$-universal.
- Count "full" D-degenerate graphs (in order) on [n]:

B there are (at least) $\prod_{k=D+1}^{n}\binom{k-1}{D} \geq(c n / D)^{D n}$

- How many are there in G?
* Pick any Din edges and any ordering of the n vertices they span.

人 at most $\binom{e(G)}{D n} n!\leq\left(\frac{e(G) \cdot e}{D n}\right)^{D n} n^{n}$

- So : $e(G) \geq c n^{2-1 / D}$

Universality for $\mathscr{H}(n, D)$

Theorem (Allen, Böltcher, L. 2023+)
There exists a graph G with $n^{2-1 / D}$ polylog (n) edges that is $\mathscr{H}(n, D)$-universal.

Universality for $\mathscr{H}(n, D)$

Theorem (Allen, Böltcher, L. 2023+)
There exists a graph G with $n^{2-1 / D}$ polylog (n) edges that is $\mathscr{H}(n, D)$-universal.

Let H be a D-degenerate graph.

Universality for $\mathscr{H}(n, D)$
Theorem (Allen, Böttcher, L. 2023 +)
There exists a graph G with $n^{2-1 / D}$ poly $\log (n)$ edges that is $\mathscr{H}(n, D)$-universal.

Let H be a D-degenerate graph.

Observation 1: H may have a vertex of degree $n-1$.
So ordinary $G(n, p)$ wont work when $p=0(1)$.

Universality for $\mathscr{H}(n, D)$
Theorem (Allen, Böttcher, L. 2023 +)
There exists a graph G with $n^{2-1 / D}$ polylog (n) edges that is $\mathscr{H}(n, D)$-universal.

Let H be a D-degenerate graph.

Observation 1: H may have a vertex of degree $n-1$.
B So ordinary $G(n, p)$ wont work when $p=0(1)$.

Observation 2: $e(H) \leq \operatorname{Dn}$
So $\#\{$ vertices of degree $\geq k\} \leq 2 \mathrm{Dn} / \mathrm{k}$.
B In particular, $\#\{$ vertices of degree $\geq \varepsilon n\} \leq 2 D \varepsilon^{-1}$.

Construction: Random block model
Remember: $\#\{$ vertices in H of degree $\geq k\} \leq 2 \mathrm{Dh} / \mathrm{K}$

Construction: Random block model
Remember: $\#\{$ vertices in H of degree $\geq k\} \leq 2 \mathrm{Dh} / \mathrm{k}$

Construction: Random block model
Remember: $\#\{$ vertices in H of degree $\geq k\} \leq 2 \mathrm{Dh} / \mathrm{K}$

Construction: Random block model
Remember: $\#\{$ vertices in H of degree $\geq k\} \leq 2 \mathrm{Dn} / \mathrm{k}$

Construction: Random block model
Remember: $\#\{$ vertices in H of degree $\geq k\} \leq 2 \mathrm{Dh} / \mathrm{K}$

Open problems

- We proved: $n^{2-1 / D} \operatorname{polylog}(n)$ edges are sufficient to find an $\mathscr{H}(n, D)$-universal graph G.
- This G has Cr vertices. Construction gives (with extra work) $C=(1+\varepsilon) n$.
B Can we find a construction where G has n vertices?
sCan we remove the polylog(n) factor?
- Almost the same bound as for $\mathscr{H}_{\Delta}(n, D)$-universality.

When is $G(n, p)$ universal for $\mathscr{H}_{\Delta}(n)$?

Open problems

- We proved: $n^{2-1 / D} \operatorname{polylog}(n)$ edges are sufficient to find an $\mathscr{H}(n, D)$-universal graph G.
- This G has Cr vertices. Construction gives (with extra work) $C=(1+\varepsilon) n$.

Ban we find a construction where G has n vertices?
sCan we remove the polylog(n) factor?

- Almost the same bound as for $\mathscr{H}_{\Delta}(n, D)$-universality.

When is $G(n, p)$ universal for $\mathscr{H}_{\Delta}(n)$?

