Universality for graphs of bounded degeneracy

Anita Liebenau UNSW Sydney

J/w Peter Allen and Julia Böttcher

45ACC QUWA in Perth 11 December 2023

Universalily

H is a subgraph of G if there is an injective φ : V(H) → V(G) such that uv ∈ E(H) ⇒ φ(u)φ(v) ∈ E(G)
G is universal for H if H ⊆ G for all H ∈ H

Universality

 $uv \in E(H) \implies \varphi(u)\varphi(v) \in E(G)$ G is universal for \mathcal{H} if H ⊆ G for all $H ∈ \mathcal{H}$ \bullet e.g. K_n is universal for $\{\text{graphs on } \leq n \text{ vertices}\}$

 ${}^{\oslash}$ H is a subgraph of G if there is an injective $\varphi:V(H) \to V(G)$ such that

 \circ e.g. if G has $o(n \log n)$ edges, then it is not universal for $\{n$ -vertex trees \}

Universalily

 \circ H is a subgraph of G if there is an injective $\varphi: V(H) \to V(G)$ such that $uv \in E(H) \implies \varphi(u)\varphi(v) \in E(G)$ G is universal for \mathcal{H} if H ⊆ G for all $H ∈ \mathcal{H}$ o e.g. K_n is universal for {graphs on $\leq n$ vertices} \circ e.g. if G has $o(n \log n)$ edges, then it is not universal for $\{n$ -vertex trees \} Why?

• For every i = 1, 2, ... there is a tree with i vertices of degree ~ n/i

If G universal then its degree sequence is at least (n, n/2, n/3, ...)• So $e(G) \ge \frac{1}{2} \sum_{i=1}^{n} \frac{n}{i} = \Omega(n \log n)$ i=1

• There is a graph with $O(n \log n)$ edges that is universal for $\mathcal{H} = \{n \text{-vertex trees}\}.$

What is min $\{e(G) : G \in \mathcal{H} - universal\}$?

Chung & Graham 1983

• There is a graph with $O(n \log n)$ edges that is universal for $\mathcal{H} = \{n \text{-vertex trees}\}.$

Friedman & Pippenger 1986 • There is a graph with O(n) edges that is universal for $\mathcal{H} = \{n \text{-vertex trees of maximum degree } \Delta\}.$

What is min $\{e(G) : G \in \mathcal{H} \ universal\}$?

Chung & Graham 1983

• There is a graph with $O(n \log n)$ edges that is universal for $\mathcal{H} = \{n - vertex \ trees\}.$

• There is a graph with O(n) edges that is universal for $\mathcal{H} = \{n \text{-vertex trees of maximum degree } \Delta\}.$

• There is a graph with $O(n^{2-2/\Delta})$ edges that is universal for $\mathcal{H} = \{n \text{-vertex graphs of maximum degree } \Delta\}$. \rightarrow best possible order of magnitude

What is min $\{e(G) : G \in \mathcal{H} \$ universal $\}$?

Chung & Graham 1983

Friedman & Pippenger 1986

Alon & Capalbo 2008

For some $p = \Theta(1/n)$, G(Cn, p) is a.a.s. universal for 0 $\mathcal{T}(n, \Delta) := \{n \text{-vertex trees of maximum degree } \Delta\}.$

Montgomery 2019 For some $p = \Theta(\log n/n)$, G(n, p) is a.a.s. universal for $\mathcal{T}(n, \Delta)$. 0

For which p is G(N,p) H-universal?

For which p is C(N,p) H-universal?

- For some $p = \Theta(1/n)$, G(Cn, p) is a.a.s. universal for $\mathcal{T}(n, \Delta) := \{n \text{-vertex trees of maximum degree } \Delta\}.$
- For some $p = \Theta(\log n/n)$, G(n, p) is a.a.s. universal for $\mathcal{T}(n, \Delta)$.
- For some $p = \tilde{\Theta}(n^{-1/\Delta})$, $G((1 + \varepsilon)n, p)$ is a.a.s. universal for $\mathscr{H}_{\Delta}(n) := \{n \text{-vertex graphs of maximum degree } \Delta\}.$

Friedman & Pippenger 1986 Montgomery 2019 Alon, Capalbo, Kohayakawa, Rödl, Ruciński & Szemerédi 2000

For which p is G(N,p) H-universal?

- For some $p = \Theta(1/n)$, G(Cn, p) is a.a.s. universal for $\mathcal{T}(n, \Delta) := \{n \text{-vertex trees of maximum degree } \Delta\}$.
- For some $p = \Theta(\log n/n)$, G(n,p) is a.a.s. universal for $\mathcal{T}(n,\Delta)$.
- For some $p = \tilde{\Theta}(n^{-1/\Delta})$, $G((1 + \varepsilon)n, p)$ is a.a.s. universal for $\mathscr{H}_{\Delta}(n) := \{n \text{-vertex graphs of maximum degree } \Delta\}$.
 - $\rightarrow p = \Omega(n^{-2/(\Delta+1)})$ is necessary

Friedman & Pippenger 1986 num degree Δ }. A.a.s. universal for $\mathcal{T}(n, \Delta)$. Alon, Capalbo, Kohayakawa, Rödl, Ruciński & Szemerédi 2000) is a.a.s. universal for Emum degree Δ }. Conton, Ferber, Nenadov &

For some $p = \tilde{\Theta}(n^{-1/(\Delta-1)})$, $G((1 + \varepsilon)n, p)$ is a.a.s. $\mathcal{H}_{\Delta}(n)$ -universal.

D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 0 sends \leq D edges backwards.

D-degenerate graphs

• H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.

0 E.g. trees are 1-degenerate.

- @ H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.
- © E.g. trees are 1-degenerate.
- $\mathcal{H}(n, D) := \{n \text{-vertex graphs with degeneracy } D\}$

D-degenerate graphs

 b_1 b_2 b_3 \cdots b_i b_i b_n

- o H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.
- © E.g. trees are 1-degenerate.
- $\mathcal{H}(n, D) := \{n \text{-vertex graphs with degeneracy } D\}$
- $\mathcal{H}_{\Lambda}(n,D) := \mathcal{H}_{\Lambda}(n) \cap \mathcal{H}(n,D)$
- For some $p = \tilde{\Theta}(n^{-1/2D})$, G(n,p) is a.a.s. $\mathcal{H}_{\Lambda}(n,D)$ -universal.
- For some $p = \tilde{\Theta}(n^{-1/D})$, $G((1 + \varepsilon)n, p)$ is a.a.s. $\mathcal{H}_{\Delta}(n, D)$ -universal.

D-degenerate graphs

 b_1 b_2 b_3 \cdots b_n

Ferber & Nenadov 2018

- o H is D-degenerate if one can order the vertices such that each vertex sends \leq D edges backwards.
- © E.g. trees are 1-degenerate.
- $\mathcal{H}(n, D) := \{n \text{-vertex graphs with degeneracy } D\}$
- $\Im \ \mathcal{H}_{\Lambda}(n,D) := \mathcal{H}_{\Lambda}(n) \cap \mathcal{H}(n,D)$
- For some $p = \tilde{\Theta}(n^{-1/2D})$, G(n,p) is a.a.s. $\mathcal{H}_{\Delta}(n,D)$ -universal.
- For some $p = \tilde{\Theta}(n^{-1/D})$, $G((1 + \varepsilon)n, p)$ is a.a.s. $\mathcal{H}_{\Delta}(n, D)$ -universal.

Question (Alon 2019)

D-degenerate graphs

 b_1 b_2 b_3 \cdots b_i b_i

Ferber & Nenadov 2018

Nenadov 2016

What is min $\{e(G) : G \text{ is } \mathcal{H}\text{-universal}\}$ for $\mathcal{H} = \mathcal{H}(n, D)$?

Suppose G is $\mathcal{H}(n, D)$ -universal. 0 Count "full" D-degenerate graphs (in order) on [n]: 0

Ehere are (at least) $\prod_{k=D+1}^{n} \binom{k-1}{D} \ge (cn/D)^{Dn}$

A counting lower bound

\circ Suppose G is $\mathcal{H}(n, D)$ -universal. Count "full" D-degenerate graphs (in order) on [n]: 0

Ehere are (at least) $\prod_{k=D+1}^{n} \binom{k-1}{D} \ge (cn/D)^{Dn}$ \circ How many are there in G?

Pick any Dn edges and any ordering of the n vertices they span. $at most \begin{pmatrix} e(G) \\ Dn \end{pmatrix} n! \leq \left(\frac{e(G) \cdot e}{Dn}\right)^{Dn} n^{n}$

A counting Lower bound

\circ Suppose G is $\mathcal{H}(n, D)$ -universal. Count "full" D-degenerate graphs (in order) on [n]: 0

 $at most \begin{pmatrix} e(G) \\ Dn \end{pmatrix} n! \leq \left(\frac{e(G) \cdot e}{Dn}\right)^{Dn} n^{n}$

 \circ So : $e(G) \ge cn^{2-1/D}$

A counting Lower bound

Pick any Dn edges and any ordering of the n vertices they span.

Theorem (Allen, Böllcher, L. 2023+)

There exists a graph G with $n^{2-1/D}$ polylog(n) edges that is $\mathcal{H}(n, D)$ -universal.

Universalily for $\mathcal{H}(n, D)$

Theorem (Allen, Böllcher, L. 2023+) There exists a graph G with $n^{2-1/D}$ polylog(n) edges that is $\mathcal{H}(n, D)$ -universal.

Let H be a D-degenerate graph.

Universalily for $\mathcal{H}(n, D)$

Theorem (Allen, Böllcher, L. 2023+) There exists a graph G with $n^{2-1/D}$ polylog(n) edges that is $\mathcal{H}(n, D)$ -universal.

Let H be a D-degenerate graph. Observation 1: H may have a vertex of degree n-1. B so ordinary G(n,p) wont work when p=o(1).

Universalily for $\mathcal{H}(n, D)$

Theorem (Allen, Böllcher, L. 2023+) There exists a graph G with $n^{2-1/D}$ polylog(n) edges that is $\mathcal{H}(n, D)$ -universal.

Let H be a D-degenerate graph. Observation 1: H may have a vertex of degree n-1. B so ordinary G(n,p) wont work when p=o(1).

Observation 2: $e(H) \leq Dh$

 $ightarrow 50 \# \{ vertices of degree \ge k \} \le 2Dn/k.$

Universality for $\mathcal{H}(n, D)$

In particular, # { vertices of degree $\geq \varepsilon n$ } $\leq 2D\varepsilon^{-1}$.

embed vertices of degree $\geq n^{1/D}$ $|W_1| \approx n^{1-1/D}$

embed vertices of degree $\leq \Delta = 3^D$

embed vertices of degree $\geq n^{1/D^i}$

edge probability $p_{i,j} \approx n^{-\frac{1}{D} + \frac{1}{D^i} + \frac{1}{D^j}}$ $\mathbb{E} e(W_i, W_j) \approx n^{2-1/D}$

 $|W_j| \approx n^{1-1/D^j}$

 $|W_M| \approx n$ $p_M \approx n^{-1/D}$ $(M \sim \log \log n)$

embed vertices of degree $\leq \Delta = 3^D$

• • •

• • •

 $|W_i| \approx n^{1-1/D^i}$

embed vertices of degree $\geq n^{1/D^{i}}$

 $|W_j| \approx n^{1-1/D^j}$

 $|W_M| \approx n$ $p_M \approx n^{-1/D}$ $(\overline{M} \sim \log \log n)$

embed vertices of degree $\leq \Delta = 3^D$

• • •

embed vertices of degree $\geq n^{1/D^{i}}$

 $|W_j| \approx n^{1-1/D^j}$

edge probability $p_{i,j} \approx n^{-\frac{1}{D} + \frac{1}{D^i} + \frac{1}{D^j}}$ $\triangleright \mathbb{E} e(W_i, W_j) \approx n^{2-1/D}$

 $|W_M| \approx n$ $p_M \approx n^{-1/D}$ $(M \sim \log \log n)$

embed vertices of degree $\leq \Delta = 3^D$

• • •

 $|W_i| \approx n^{1-1/D^i}$ $p_i \approx n^{\frac{2}{D^i} - \frac{1}{D}}$

embed vertices of degree $\geq n^{1/D^i}$

edge probability $p_{i,j} \approx n^{-\frac{1}{D} + \frac{1}{D^i} + \frac{1}{D^j}}$ $\triangleright \mathbb{E} e(W_i, W_j) \approx n^{2-1/D}$

 $|W_j| \approx n^{1-1/D^j}$

 $|W_M| \approx n$ $p_M \approx n^{-1/D}$ $(M \sim \log \log n)$ embed vertices of degree $\leq \Delta = 3^D$

 $\supset G(Cn, p_M)$ is $\mathcal{H}_{\Delta}(n, D)$ -universal (Nenadov 2016)

• • •

 $|W_i| \approx n^{1-1/D^i}$ $p_i \approx n^{\frac{2}{D^i} - \frac{1}{D}}$

embed vertices of degree $\geq n^{1/D^i}$

edge probability $p_{i,j} \approx n^{-\frac{1}{D} + \frac{1}{D^i} + \frac{1}{D^j}}$ $\triangleright \mathbb{E} e(W_i, W_j) \approx n^{2-1/D}$

 $|W_j| \approx n^{1-1/D^j}$

And a contract of the contract

- We proved: $n^{2-1/D}$ polylog(n) edges are sufficient to find an $\mathcal{H}(n,D)$ -universal graph G.
- @ This G has Cn vertices. Construction gives (with extra work) $C = (1 + \varepsilon)n$.

D Can we find a construction where G has n vertices?

D Can we remove the polylog(n) factor?

Almost the same bound as for $\mathcal{H}_{\Delta}(n,D)$ -universality.

Nhen is G(n,p) universal for $\mathcal{H}_{\Lambda}(n)$?

Open problems

- We proved: $n^{2-1/D}$ polylog(n) edges are sufficient to find an $\mathcal{H}(n, D)$ -universal graph G.
- o This G has Cn vertices. Construction gives (with extra work) $C = (1 + \varepsilon)n$.

D Can we find a construction where G has n vertices?

D Can we remove the polylog(n) factor?

Almost the same bound as for $\mathcal{H}_{\Delta}(n,D)$ -universality.

Note when is G(n,p) universal for $\mathcal{H}_{\Lambda}(n)$?

Open problems

