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Why? 
For every i = 1,2,… there is a tree with i vertices of degree n/i 

If G universal then its degree sequence is at least  

So 

∼

(n, n/2, n/3,…)

e(G) ≥ 1
2

n

∑
i=1

n
i

= Ω(n log n)
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.ℋ = {n-vertex trees}

Chung & Graham 1983

There is a graph with O(n) edges that is universal for 
.ℋ = {n-vertex trees of maximum degree Δ}

Friedman & Pippenger 1986

There is a graph with O( ) edges that is universal for 
.

n2−2/Δ

ℋ = {n-vertex graphs of maximum degree Δ}

Alon & Capalbo 2008

 best possible order of magnitude→
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For some ,  is a.a.s. -universal.p = Θ̃(n−1/(Δ−1)) G((1 + ε)n, p) ℋΔ(n)
Conlon, Ferber, Nenadov &  

Škorić 2017

 is necessary→ p = Ω(n−2/(Δ+1))



D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 
sends  D edges backwards.≤



D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 
sends  D edges backwards.≤

E.g. trees are 1-degenerate. 



   ℋ(n, D) := {n-vertex graphs with degeneracy D}
ℋΔ(n, D) := ℋΔ(n) ∩ ℋ(n, D)

D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 
sends  D edges backwards.≤

E.g. trees are 1-degenerate. 



   ℋ(n, D) := {n-vertex graphs with degeneracy D}
ℋΔ(n, D) := ℋΔ(n) ∩ ℋ(n, D)

D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 
sends  D edges backwards.≤

E.g. trees are 1-degenerate. 

For some ,  is a.a.s. -universal.p = Θ̃(n−1/2D) G(n, p) ℋΔ(n, D) Ferber & Nenadov 2018

For some ,  is a.a.s. -universal.p = Θ̃(n−1/D) G((1 + ε)n, p) ℋΔ(n, D) Nenadov 2016



   ℋ(n, D) := {n-vertex graphs with degeneracy D}
ℋΔ(n, D) := ℋΔ(n) ∩ ℋ(n, D)

D-degenerate graphs

H is D-degenerate if one can order the vertices such that each vertex 
sends  D edges backwards.≤

E.g. trees are 1-degenerate. 

For some ,  is a.a.s. -universal.p = Θ̃(n−1/2D) G(n, p) ℋΔ(n, D) Ferber & Nenadov 2018

For some ,  is a.a.s. -universal.p = Θ̃(n−1/D) G((1 + ε)n, p) ℋΔ(n, D) Nenadov 2016

Question (Alon 2019) 

What is min  for ?{e(G) : G is ℋ-universal} ℋ = ℋ(n, D)
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∏n
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Universality for  ℋ(n, D)
Theorem (Allen, Böttcher, L. 2023+) 

There exists a graph G with  edges that is -universal. n2−1/Dpolylog(n) ℋ(n, D)

Observation 1: H may have a vertex of degree n-1.

Let H be a D-degenerate graph.

 So ordinary G(n,p) won’t work when p=o(1).

Observation 2: e(H)  Dn≤

 So # { vertices of degree  k }  2Dn/k.  

 In particular, # { vertices of degree n }  2D .

≥ ≤
≥ ε ≤ ε−1



Remember: # { vertices in H of degree  k }  2Dn/k≥ ≤
Construction: Random block model
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|Wj | ≈ n1−1/Dj
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of degree ≥ n1/Di

edge probability 

pi,j ≈ n− 1
D + 1

Di + 1
Dj

 2 e(Wi, Wj) ≈ n2−1/D
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pi ≈ n
2

Di − 1
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|WM | ≈ n
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Open problems

We proved:   edges are sufficient to find an     
-universal graph G. 

This G has Cn vertices.                                       
Construction gives (with extra work) C = . 

Can we find a construction where G has n vertices? 

Can we remove the polylog(n) factor?  

Almost the same bound as for -universality. 

When is  universal for ? 
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-universal graph G. 

This G has Cn vertices.                                       
Construction gives (with extra work) C = . 

Can we find a construction where G has n vertices? 

Can we remove the polylog(n) factor?  

Almost the same bound as for -universality. 

When is  universal for ? 

n2−1/Dpolylog(n)
ℋ(n, D)

(1 + ε)n

ℋΔ(n, D)

G(n, p) ℋΔ(n) Thank you!


