Hello and Welcome

Generalisations of the Erdős-Ko-Rado Theorem for Permutations

Adam Mammoliti

45th Australasian Combinatorics Conference

December 2023

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq\binom{[n]}{k}$ is intersecting and $n \geq 2 k$,

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq\binom{[n]}{k}$ is intersecting and $n \geq 2 k$,

$$
\begin{aligned}
& n=6 \\
& k=2
\end{aligned}
$$

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq\binom{[n]}{k}$ is intersecting and $n \geq 2 k$,

$$
\begin{aligned}
& n=6 \\
& k=2
\end{aligned}
$$

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq\binom{[n]}{k}$ is intersecting and $n \geq 2 k$, then

$$
|\mathscr{F}| \leq\binom{ n-1}{k-1}
$$

$$
\begin{aligned}
& n=6 \\
& k=2
\end{aligned}
$$

The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq\binom{[n]}{k}$ is intersecting and $n \geq 2 k$, then

$$
|\mathscr{F}| \leq\binom{ n-1}{k-1}
$$

with equality for $n>2 k$ if and only if \mathscr{F} is a star.

$$
\begin{aligned}
& n=6 \\
& k=2
\end{aligned}
$$

The Erdős-Ko-Rado Theorem for Permutations

■ Permutations $\sigma, \tau \in S_{n}$ intersect if $\sigma(i)=\tau(i)$ for some i.

The Erdős-Ko-Rado Theorem for Permutations

■ Permutations $\sigma, \tau \in S_{n}$ intersect if $\sigma(i)=\tau(i)$ for some i.
Theorem (Deza \& Frankl 1977)
If $\mathscr{F} \subseteq S_{n}$ is intersecting,

The Erdős-Ko-Rado Theorem for Permutations

■ Permutations $\sigma, \tau \in S_{n}$ intersect if $\sigma(i)=\tau(i)$ for some i.
Theorem (Deza \& Frankl 1977)
If $\mathscr{F} \subseteq S_{n}$ is intersecting, then

$$
|\mathscr{F}| \leq(n-1)!
$$

The Erdős-Ko-Rado Theorem for Permutations

■ Permutations $\sigma, \tau \in S_{n}$ intersect if $\sigma(i)=\tau(i)$ for some i.

Theorem (Deza \& Frankl 1977)

If $\mathscr{F} \subseteq S_{n}$ is intersecting, then

$$
|\mathscr{F}| \leq(n-1)!
$$

Proof.

Let $\sigma=(12 \cdots n)$ and $H=\langle\sigma\rangle$. The elements $\tau \sigma^{i}$ and $\tau \sigma^{j}$, intersect if and only if $\sigma^{-i} \sigma^{j}$ has a fixed point. So no two elements of the same coset of H of S_{n} can be in \mathscr{F}. There are $(n-1)$! cosets.

The Erdős-Ko-Rado Theorem for Permutations

■ Permutations $\sigma, \tau \in S_{n}$ intersect if $\sigma(i)=\tau(i)$ for some i.

Theorem (Deza \& Frankl 1977)

If $\mathscr{F} \subseteq S_{n}$ is intersecting, then

$$
|\mathscr{F}| \leq(n-1)!
$$

Theorem (Cameron \& Ku 2003, Larose \& Malvenuto 2004)

Equality holds if and only if \mathscr{F} is a star.

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.
(143)

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.

> (143)
10
○ 1
20
○ 2
30
○ 3
40
○ 4

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.
(143)

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.
(143)

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.
(143)

Permutations as Matchings of $K_{n, n}$

- We can associate permutations to perfect matchings of $K_{n, n}$.
(143)

An Erdős-Ko-Rado Theorem for Matchings

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.

- Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.
■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting,

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.
- Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.

■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting, then

$$
|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}
$$

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.
■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting, then

$$
|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}
$$

with equality if and only if \mathscr{F} is a star.

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.
■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting, then

$$
|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}
$$

with equality if and only if \mathscr{F} is a star.

- $r=n \quad$ Larose and Malvenuto (2004)

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.
■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting, then

$$
|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}
$$

with equality if and only if \mathscr{F} is a star.

- $r=n$
- $m=n$

Larose and Malvenuto (2004)
Ku and Leader (2006) (also Li and Wang (2007))

An Erdős-Ko-Rado Theorem for Matchings

- We can take matchings with r edges.
- We can take matchings from $K_{n, m}$.

■ Let $\mathcal{M}_{r}(n, m)$ be the set of matchings of $K_{n, m}$ of size r.
■ Let $(a)_{b}=\frac{a!}{(a-b)!}$ (note that $(a)_{a}=a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_{r}(n, m)$ is intersecting, then

$$
|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}
$$

with equality if and only if \mathscr{F} is a star.
■ $r=n \quad$ Larose and Malvenuto (2004)
$\square m=n \quad$ Ku and Leader (2006) (also Li and Wang (2007))
■ $r<\min \{n, m\}$ Borg and Meagher (2015)

Generalisation of Matchings of $K_{n, m}$

Generalisation of Matchings of $K_{n, m}$

$$
\mathcal{K}_{4,4,4,4}
$$

0	0	0	0

$$
0
$$

$$
0
$$

$$
0
$$

$$
0
$$

0

Generalisation of Matchings of $K_{n, m}$

$$
\mathcal{K}_{4,4,4,4}
$$

Generalisation of Matchings of $K_{n, m}$

$$
\mathcal{K}_{4,4,4,4}
$$

$$
\circ
$$

$$
0
$$

$$
0
$$

$$
0
$$

Generalisation of Matchings of $K_{n, m}$

Generalisation of Matchings of $K_{n, m}$

Matching of $\mathcal{K}_{4,4,4,4}$

Generalisation of Matchings of $K_{n, m}$

■ Let $\mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be the set of matchings of size r of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$.
Matching of $\mathcal{K}_{4,4,4,4}$

An Erdös-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$

An Erdős-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$

Theorem (M.)
Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family.

An Erdős-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$

Theorem (M.)
Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

An Erdős-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

An Erdős-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_{1}, \ldots, n_{k}}$

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.
■ When $k=1$ we get the Erdős-Ko-Rado Theorem for $n>2 r$.

A Trick

0

0
0
0

0

0
0
0
0

A Trick

0
0
0
0

A Trick

○
○
○
\circ

A Trick

$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$

A Trick

○
○
○
○

A Trick

A Trick

Matching of $\mathcal{K}_{4,4,4,-}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-} \quad$ Matching of $\mathcal{K}_{-,-, 4,4}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-} \quad$ Matching of $\mathcal{K}_{-,-, 4,4}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-} \quad$ Matching of $\mathcal{K}_{-,-, 4,4}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-} \quad$ Matching of $\mathcal{K}_{-,-, 4,4}$

A Trick

Matching of $\mathcal{K}_{4,4,4,-} \quad$ Matching of $\mathcal{K}_{-,-, 4,4}$

A Trick

Proof Sketch

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Proof Sketch

Theorem (M.)
Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}}
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Proof Sketch

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}}
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family.

Proof Sketch

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}}
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting

Proof Sketch

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$

Proof Sketch

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then

$$
|\mathscr{F}| \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch

Proof Sketch.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch

Proof Sketch.

$$
|\mathscr{F}|=\sum_{x \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|
$$

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch

Proof Sketch.

$$
\begin{aligned}
|\mathscr{F}| & =\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right| \\
& \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k-1}-1\right)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1}\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}}
\end{aligned}
$$

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch

Proof Sketch.

$$
\begin{aligned}
|\mathscr{F}| & =\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right| \\
& \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k-1}-1\right)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1}\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} \\
& =\frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
\end{aligned}
$$

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch

Proof Sketch.

$$
\begin{aligned}
|\mathscr{F}| & =\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right| \\
& \leq \frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k-1}-1\right)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1}\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} \\
& =\frac{\left(n_{1}-1\right)_{r-1} \cdots\left(n_{k}-1\right)_{r-1}}{(r-1)_{r-1}} .
\end{aligned}
$$

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_{r}\left(n_{1}, \ldots, n_{k}\right)$ be an intersecting family. Then
(i) $B(\mathscr{F})$ and $R_{X}(\mathscr{F})$ are intersecting
(ii) $|\mathscr{F}|=\sum_{X \in B(\mathscr{F})}\left|R_{X}(\mathscr{F})\right|$
(iii) if $B(\mathscr{F})$ and all $R_{X}(\mathscr{F})$ are stars, then \mathscr{F} is a star.

The End

Thanks for listening!

References

■ P. Borg and K. Meagher, Intersecting generalised permutations.
Australas. J. Combin., 61, (2015), 147-155.

- F. Brunk and S. Huczynska,

Some Erdős-Ko-Rado theorems for injections.
European J. Combin., (3) 31, (2010), 839-860.

- P. J. Cameron and C. Y. Ku, Intersecting families of permutations.
European J. Combin., (7) 24, (2003), 881-890.
- P. Erdős, C. Ko and R. Rado,

Intersection theorems for systems of finite sets.
Quart. J. Math. Oxford Ser. (2) 12, (1961), 313-320.

References

■ P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance. J. Combin. Theory Ser. A., 22, (1977), 352-360.

■ C.Y. Ku and I. Leader, An Erdős-Ko-Rado theorem for partial permutations. Discrete Math., (1) 306, (2006), 74-86.

- B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs. European J. Combin., (5) 25, (2004), 657-673.
- Y. Li and J. Wang,

Erdős-Ko-Rado-type theorems for colored sets.
Electron. J. Combin., (1) 14, (2007), Research Paper 1, 9.

