Generalisations of the Erdős-Ko-Rado Theorem for Permutations

Adam Mammoliti

45th Australasian Combinatorics Conference

December 2023

Erdős-Ko-Rado Theorem (1961)

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq {\binom{[n]}{k}}$ is intersecting and $n \ge 2k$,

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq {\binom{[n]}{k}}$ is intersecting and $n \ge 2k$,

$$n = 6$$
$$k = 2$$

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq {\binom{[n]}{k}}$ is intersecting and $n \ge 2k$,

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq {\binom{[n]}{k}}$ is intersecting and $n \ge 2k$, then

$$|\mathscr{F}| \le \binom{n-1}{k-1}$$

Erdős-Ko-Rado Theorem (1961)

If $\mathscr{F} \subseteq {[n] \choose k}$ is intersecting and $n \ge 2k$, then

$$|\mathscr{F}| \leq \binom{n-1}{k-1}$$

with equality for n > 2k if and only if \mathscr{F} is a star.

Permutations $\sigma, \tau \in S_n$ intersect if $\sigma(i) = \tau(i)$ for some *i*.

Permutations $\sigma, \tau \in S_n$ intersect if $\sigma(i) = \tau(i)$ for some *i*.

Theorem (Deza & Frankl 1977)

If $\mathscr{F} \subseteq S_n$ is intersecting,

Permutations $\sigma, \tau \in S_n$ intersect if $\sigma(i) = \tau(i)$ for some *i*.

Theorem (Deza & Frankl 1977)

If $\mathscr{F} \subseteq S_n$ is intersecting, then

$$|\mathscr{F}| \leq (n-1)!$$

Permutations $\sigma, \tau \in S_n$ intersect if $\sigma(i) = \tau(i)$ for some *i*.

Theorem (Deza & Frankl 1977)

If $\mathscr{F} \subseteq S_n$ is intersecting, then

$$|\mathscr{F}| \leq (n-1)!$$

Proof.

Let $\sigma = (1 \ 2 \cdots n)$ and $H = \langle \sigma \rangle$. The elements $\tau \sigma^i$ and $\tau \sigma^j$, intersect if and only if $\sigma^{-i} \sigma^j$ has a fixed point. So no two elements of the same coset of H of S_n can be in \mathscr{F} . There are (n-1)! cosets.

Permutations $\sigma, \tau \in S_n$ intersect if $\sigma(i) = \tau(i)$ for some *i*.

Theorem (Deza & Frankl 1977)

If $\mathscr{F} \subseteq S_n$ is intersecting, then

$$|\mathscr{F}| \leq (n-1)!$$

Theorem (Cameron & Ku 2003, Larose & Malvenuto 2004)

Equality holds if and only if \mathscr{F} is a star.

Permutations as Matchings of $K_{n,n}$

(143)

	(143)	
1 0	01	
2 0	02	
3 0	03	
4 0	○ 4	

• We can take matchings with *r* edges.

- We can take matchings with *r* edges.
- We can take matchings from $K_{n,m}$.

- We can take matchings with *r* edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.

- We can take matchings with *r* edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting,

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting, then

$$|\mathscr{F}| \leq rac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}$$

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting, then

$$|\mathscr{F}| \leq \frac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}$$

with equality if and only if \mathscr{F} is a star.

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting, then

$$|\mathscr{F}| \leq rac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}$$

with equality if and only if \mathcal{F} is a star.

r = n Larose and Malvenuto (2004)

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting, then

$$|\mathscr{F}| \leq rac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}$$

with equality if and only if \mathcal{F} is a star.

- *r* = *n* Larose and Malvenuto (2004)
- *m* = *n* Ku and Leader (2006) (also Li and Wang (2007))

- We can take matchings with r edges.
- We can take matchings from $K_{n,m}$.
- Let $\mathcal{M}_r(n, m)$ be the set of matchings of $K_{n,m}$ of size r.
- Let $(a)_b = \frac{a!}{(a-b)!}$ (note that $(a)_a = a!$)

Theorem (By many)

If $\mathscr{F} \subseteq \mathcal{M}_r(n,m)$ is intersecting, then

$$|\mathscr{F}| \leq rac{(n-1)_{r-1}(m-1)_{r-1}}{(r-1)_{r-1}}$$

with equality if and only if \mathcal{F} is a star.

- r = n Larose and Malvenuto (2004)
- *m* = *n* Ku and Leader (2006) (also Li and Wang (2007))
- $r < \min\{n, m\}$ Borg and Meagher (2015)

Generalisation of Matchings of $\overline{K_{n,m}}$

Generalisation of Matchings of $K_{n,m}$

Generalisation of Matchings of $K_{n,m}$

• Let $\mathcal{M}_r(n_1, \ldots, n_k)$ be the set of matchings of size r of $\mathcal{K}_{n_1, \ldots, n_k}$.

Matching of $\mathcal{K}_{4,4,4,4}$

An Erdős-Ko-Rado Theorem for Matchings of $\mathcal{K}_{n_1,...,n_k}$

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family.

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq rac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

• When k = 1 we get the Erdős-Ko-Rado Theorem for n > 2r.

Matching of $\mathcal{K}_{4,4,4,-}$

Matching of $\mathcal{K}_{4,4,4,-}$

Matching of $\mathcal{K}_{4,4,4,-}$ Matching of $\mathcal{K}_{-,-,4,4}$

Matching of $\mathcal{K}_{4,4,4,-}$ Matching of $\mathcal{K}_{-,-,4,4}$

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if ${\mathscr F}$ is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family.

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then (i) $\mathcal{B}(\mathscr{F})$ and $\mathcal{R}_{\chi}(\mathscr{F})$ are intersecting

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \dots, n_k)$ be an intersecting family. Then (i) $\mathcal{B}(\mathscr{F})$ and $\mathcal{R}_X(\mathscr{F})$ are intersecting (ii) $|\mathscr{F}| = \sum_{X \in \mathcal{B}(\mathscr{F})} |\mathcal{R}_X(\mathscr{F})|$

Theorem (M.)

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, \ldots, n_k)$ be an intersecting family. Then

$$|\mathscr{F}| \leq \frac{(n_1-1)_{r-1}\cdots(n_k-1)_{r-1}}{(r-1)_{r-1}}$$

Furthermore, equality holds if and only if \mathscr{F} is a star.

Lemma

Proof Sketch.

Lemma

Let $\mathscr{F} \subseteq \mathcal{M}_r(n_1, ..., n_k)$ be an intersecting family. Then (i) $\mathcal{B}(\mathscr{F})$ and $\mathcal{R}_X(\mathscr{F})$ are intersecting (ii) $|\mathscr{F}| = \sum_{X \in \mathcal{B}(\mathscr{F})} |\mathcal{R}_X(\mathscr{F})|$

(iii) if $B(\mathscr{F})$ and all $R_X(\mathscr{F})$ are stars, then \mathscr{F} is a star.

Proof Sketch.

$$|\mathscr{F}| = \sum_{X \in B(\mathscr{F})} |R_X(\mathscr{F})|$$

Lemma

Proof Sketch.

$$\begin{aligned} |\mathscr{F}| &= \sum_{X \in B(\mathscr{F})} |R_X(\mathscr{F})| \\ &\leq \frac{(n_1 - 1)_{r-1} \cdots (n_{k-1} - 1)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1} (n_k - 1)_{r-1}}{(r-1)_{r-1}} \end{aligned}$$

Lemma

Proof Sketch.

$$\begin{split} |\mathscr{F}| &= \sum_{X \in B(\mathscr{F})} |R_X(\mathscr{F})| \\ &\leq \frac{(n_1 - 1)_{r-1} \cdots (n_{k-1} - 1)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1} (n_k - 1)_{r-1}}{(r-1)_{r-1}} \\ &= \frac{(n_1 - 1)_{r-1} \cdots (n_k - 1)_{r-1}}{(r-1)_{r-1}}. \end{split}$$

Lemma

Proof Sketch.

$$\begin{split} |\mathscr{F}| &= \sum_{X \in B(\mathscr{F})} |R_X(\mathscr{F})| \\ &\leq \frac{(n_1 - 1)_{r-1} \cdots (n_{k-1} - 1)_{r-1}}{(r-1)_{r-1}} \frac{(r-1)_{r-1}(n_k - 1)_{r-1}}{(r-1)_{r-1}} \\ &= \frac{(n_1 - 1)_{r-1} \cdots (n_k - 1)_{r-1}}{(r-1)_{r-1}}. \end{split}$$

Lemma

Thanks for listening!

References

- P. Borg and K. Meagher, Intersecting generalised permutations. *Australas. J. Combin.*, **61**, (2015), 147–155.
- F. Brunk and S. Huczynska, Some Erdős-Ko-Rado theorems for injections. European J. Combin., (3) 31, (2010), 839–860.
- P. J. Cameron and C. Y. Ku, Intersecting families of permutations. *European J. Combin.*, (7) 24, (2003), 881–890.
- P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12, (1961), 313-320.

References

- P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance.
 J. Combin. Theory Ser. A., 22, (1977), 352–360.
- C.Y. Ku and I. Leader, An Erdős-Ko-Rado theorem for partial permutations. *Discrete Math.*, (1) **306**, (2006), 74–86.
- B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs. *European J. Combin.*, (5) 25, (2004), 657–673.
- Y. Li and J. Wang, Erdős-Ko-Rado-type theorems for colored sets. *Electron. J. Combin.*, (1) 14, (2007), Research Paper 1, 9.