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The Erdős-Ko-Rado Theorem

Erdős-Ko-Rado Theorem (1961)

If F ⊆
([n]
k

)
is intersecting and n ≥ 2k, then

|F | ≤
(
n − 1

k − 1

)
with equality for n > 2k if and only if F is a star.

n = 6

k = 2
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The Erdős-Ko-Rado Theorem for Permutations

Permutations σ, τ ∈ Sn intersect if σ(i) = τ(i) for some i .

Theorem (Deza & Frankl 1977)

If F ⊆ Sn is intersecting,

then

|F | ≤ (n − 1)!

Proof.

Let σ = (1 2 · · · n) and H = ⟨σ⟩. The elements τσi and τσj ,
intersect if and only if σ−iσj has a fixed point. So no two elements
of the same coset of H of Sn can be in F . There are (n − 1)!
cosets.

Theorem (Cameron & Ku 2003, Larose & Malvenuto 2004)

Equality holds if and only if F is a star.
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Permutations as Matchings of Kn,n

We can associate permutations to perfect matchings of Kn,n.
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3 3
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An Erdős-Ko-Rado Theorem for Matchings

We can take matchings with r edges.

We can take matchings from Kn,m.

Let Mr (n,m) be the set of matchings of Kn,m of size r .

Let (a)b = a!
(a−b)! (note that (a)a = a!)

Theorem (By many)

If F ⊆ Mr (n,m) is intersecting, then

|F | ≤ (n − 1)r−1(m − 1)r−1

(r − 1)r−1

with equality if and only if F is a star.

r = n Larose and Malvenuto (2004)

m = n Ku and Leader (2006) (also Li and Wang (2007))

r < min{n,m} Borg and Meagher (2015)
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An Erdős-Ko-Rado Theorem for Matchings of Kn1,...,nk

Theorem (M.)

Let F ⊆ Mr (n1, . . . , nk) be an intersecting family.

Then

|F | ≤ (n1 − 1)r−1 · · · (nk − 1)r−1

(r − 1)r−1
.

Furthermore, equality holds if and only if F is a star.

When k = 1 we get the Erdős-Ko-Rado Theorem for n > 2r .
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A Trick
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MLB(M)X R(M)R(L)

FB(F ) RX (F )
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Proof Sketch

Theorem (M.)

Let F ⊆ Mr (n1, . . . , nk) be an intersecting family. Then

|F | ≤ (n1 − 1)r−1 · · · (nk − 1)r−1

(r − 1)r−1
.

Furthermore, equality holds if and only if F is a star.

Lemma

Let F ⊆ Mr (n1, . . . , nk) be an intersecting family. Then

(i) B(F ) and RX (F ) are intersecting

(ii) |F | =
∑

X∈B(F ) |RX (F )|
(iii) if B(F ) and all RX (F ) are stars, then F is a star.
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The End

Thanks for listening!
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