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with equality for n > 2k if and only if % is a star.
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The Erdos-Ko-Rado Theorem for Permutations

m Permutations 0,7 € S, intersect if o(i) = 7(i) for some i.

Theorem (Deza & Frankl 1977)

If % C S, is intersecting, then

17| < (n—1)!

Proof.

Let o = (12---n) and H = (o). The elements 7o’ and 707,
intersect if and only if 07'07 has a fixed point. So no two elements
of the same coset of H of S, can be in .#. There are (n — 1)!
cosets. Ol



The Erdos-Ko-Rado Theorem for Permutations

m Permutations 0,7 € S, intersect if o(i) = 7(i) for some i.

Theorem (Deza & Frankl 1977)

If % C S, is intersecting, then

17| < (n—1)!

Theorem (Cameron & Ku 2003, Larose & Malvenuto 2004)

Equality holds if and only if % is a star.



Permutations as Matchings of K, ,



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .

(143)



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .

(143)
10 o1
20 02
30 03

40 04



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .

(143)
1 o1
20 02
30 03

40 4



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .

(143)
1 o1
20 02
30 3



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .

(143)
1 1
20 02
3 3



Permutations as Matchings of K, ,

m We can associate permutations to perfect matchings of K, .
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m We can take matchings with r edges.
m We can take matchings from K, .
m Let M,(n, m) be the set of matchings of Kj, , of size r.

m Let (a)p = (‘:7!17)! (note that (a), = a!)

Theorem (By many)

If # C M,(n, m) is intersecting, then

(n — 1)r71(m - 1)r71
(r = 1),_1

with equality if and only if F is a star.

|F| <

mr=n Larose and Malvenuto (2004)
mEm=n Ku and Leader (2006) (also Li and Wang (2007))
m r < min{n,m} Borg and Meagher (2015)
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m Let M,(ny,...,ny) be the set of matchings of size r of K, n,.

Matching of ]C4,4,4’4
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Theorem (M.)

Let # C M,(n1,...,ng) be an intersecting family. Then

ot o (m—=1)—1- (m— 1)1

Furthermore, equality holds if and only if % is a star.

m When k = 1 we get the Erdés-Ko-Rado Theorem for n > 2r.
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A Trick
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Proof Sketch

Theorem (M.)

Let % C M,(n1,...,ng) be an intersecting family. Then
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Proof Sketch

Theorem (M.)

Let F C M,(m,...,nk) be an intersecting family. Then
7| < (m—1)r—1---(mk—1)r1
(r = 1),_1

Furthermore, equality holds if and only if % is a star.

Lemma

Let # C M,(n1,...,ng) be an intersecting family. Then
(i) B(.#) and Rx(.7) are intersecting

(i) 1] = Yxeaes) IRx(Z)]

(iii) if B(.Z) and all Rx(.%) are stars, then .7 is a star.
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Proof Sketch.

Let # C M,(n1,...,ng) be an intersecting family. Then
(i) B(#) and Rx(.7) are intersecting

(i) 171 = Yxeais) IRx(Z)]

(i) if B(.#) and all Rx(.%) are stars, then % s a star.
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Proof Sketch.
Zl= > [Rx(F)|

XeB(F)

Let # C M,(n1,...,ng) be an intersecting family. Then
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Proof Sketch.

| 7| = Z |Rx(F)
XeB(F)
< (n— 1)1 (M1 — 1)1 (r — 1),—a(nk — 1)—
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Let # C M,(n1,...,ng) be an intersecting family. Then
(i) B(#) and Rx(.7) are intersecting

(i) [#] = Xxen#) [Rx(F)
(iii) if B(.Z) and all Rx(.%) are stars, then .7 is a star.



The End

Thanks for listening!
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