
Some Examples of Combinatorial Generation

Brendan McKay

Australian National University

and various colleagues to be mentioned...

In honour of Gordon’s (61 + δ)-th birthday

combinatorial generation 1

combinatorial generation 2

combinatorial generation 3

Canonical construction path method

Example of triangle-free graphs.

combinatorial generation 4

Canonical construction path method

Example of triangle-free graphs.

Unrestricted extensions

combinatorial generation 4

Canonical construction path method

Example of triangle-free graphs.

Inequivalent extensions

combinatorial generation 4

Canonical construction path method

Example of triangle-free graphs.

Canonical reduction

combinatorial generation 4

Extremal graphs
Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without

Kr can have is when it is a complete (r−1)-partite graph with near-equal

sides.

combinatorial generation 5

Extremal graphs
Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without

Kr can have is when it is a complete (r−1)-partite graph with near-equal

sides.

K2,3,3, extreme for K4

combinatorial generation 5

Extremal graphs
Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without

Kr can have is when it is a complete (r−1)-partite graph with near-equal

sides.

K2,3,3, extreme for K4

In general, if H is a collection of graphs,

ex(n,H) =


the greatest number of edges that a graph on

n vertices can have without having a member

of H as a subgraph.

combinatorial generation 5

Extremal graphs (continued)

We will make graphs by adding one vertex at a time.

Usually, for large orders there are extremely many H-free graphs but

relatively few with close to ex(n,H) edges.

combinatorial generation 6

Extremal graphs (continued)

We will make graphs by adding one vertex at a time.

Usually, for large orders there are extremely many H-free graphs but

relatively few with close to ex(n,H) edges.

For example, graphs on 25 vertices with no C4 or C5.

edges graphs

· · ·
45 30651877057

46 895164804

47 15409643

48 176966

49 1799

50 17

combinatorial generation 6

Extremal graphs (continued)

If we remove a vertex from an extremal graph, the resulting graph might

not be extremal.

So in order to generate the extremal graphs by adding one vertex at a

time, it is necessary to also generate non-extremal graphs.

The definition of “canonical reduction” (i.e., which vertex is removed

to make the parent) is designed so that the ancestors of an extremal

graph are reasonably close to extremal.

combinatorial generation 7

Extremal graphs (continued)

If we remove a vertex from an extremal graph, the resulting graph might

not be extremal.

So in order to generate the extremal graphs by adding one vertex at a

time, it is necessary to also generate non-extremal graphs.

The definition of “canonical reduction” (i.e., which vertex is removed

to make the parent) is designed so that the ancestors of an extremal

graph are reasonably close to extremal.

This is done by a sequence of rules:

1. Choose a vertex of minimum degree.

2. If there is more than one vertex of minimum degree, choose one

that is adjacent to the most other vertices of minimum degree.

3. Etc.

4. If no vertex is chosen by now, use nauty to choose one.

combinatorial generation 7

Extremal graphs (continued)

Graphs are classified into families GH(n, e, d,m, t; d ′, m′, t ′), where

• n = the number of vertices

• e = the number of edges

• d = the minimum degree

• m = the number of vertices of minimum degree

• t = whether there are any adjacent vertices of minimum degree

• n−1, e−d, d ′, m′, t ′ = those same parameters for the parent

combinatorial generation 8

Extremal graphs (continued)

Then a lot of lemmas are applied to identify possible parameters for

the classes of the parent. For example, for H = {C4, C5}, the parents

of family GH(26, 52, 3, 3, F ; 3, 3, F) are calculated to lie in one of

GH(25, 49, 3, 3, F ; 3, 5, T),
GH(25, 49, 3, 3, F ; 3, 4, T),
GH(25, 49, 3, 3, F ; 3, 5, F), and

GH(25, 49, 3, 3, F ; 3, 4, F).

combinatorial generation 9

Extremal graphs (continued)

Since the computation is very long-running and families

GH(n, e, d,m, t; d ′, m′, t ′)
appear as ancestors for many different output sizes, we store each such

family on disk using a custom compression method that usually needs

only 1–2 bytes per graph.

Implementation

There is a controller program that decides which families are potentially

needed as ancestors for a required output size, then makes the missing

files using a multi-threaded worker process.

combinatorial generation 10

ex(n; {C4, C5})

0 1 2 3 4 5 6 7 8 9

0 0 0 1 3 4 6 7 9 10 12

10 14 16 18 21 23 25 28 30 33 35

20 38 42 43 45 48 50 53 55 58 62

30 65 67 70 73 77 79 82 86 89 93

40 96 100 105 107 110

Typical construction path for an extremal graph with 43 vertices:

Key: vertices,edges, green means extremal.

1,0, 2,1, 3,2, 4,3, 5,4, 6,6, 7,7, 8,9, 9,10, 10,12, 11,14, 12,16, 13,18,

14,20, 15,22, 16,24, 17,26, 18,28, 19,30, 20,33, 21,35, 22,38, 23,40,

24,43, 25,46, 26,49, 27,52, 28,56, 29,58, 30,61, 31,64, 32,67, 33,70,

34,74, 35,77, 36,81, 37,84, 38,88, 39,92, 40,96, 41,100, 42,105, 43,107

combinatorial generation 11

ex(n; {C4})

0 1 2 3 4 5 6 7 8 9

0 0 0 1 3 4 6 7 9 11 13

10 16 18 21 24 27 30 33 36 39 42

20 46 50 52 56 59 63 67 71 76 80

30 85 90 92 96 102 106 110 113 117 122

40 127

combinatorial generation 12

ex(n; {C3, C4})

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 5 6 8 10 12

10 15 16 18 21 23 26 28 31 34 38

20 41 44 47 50 54 57 61 65 68 72

30 76 80 85 87 90 95 99 104 109 114

40 120 124 129 134 139 145 150 156 162 168

50 175 176 178

combinatorial generation 13

ex(n; {C3, C4, C5})

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 6 7 9 10

10 12 14 16 18 21 22 24 26 29 31

20 34 36 39 42 45 48 52 53 56 58

30 61 64 67 70 74 77 81 84 88 92

40 96 100 105 106 108 110 115 118 122 126

50 130 134 138 142 147 151 156 160 165 170

60 175 180 186 187 189

combinatorial generation 14

ex(n; {C4, Codd}) (Zarankiewicz problem)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 6 7 9 10

10 12 14 16 18 21 22 24 26 29 31

20 34 36 39 42 45 48 52 53 56 58

30 61 64 67 70 74 77 81 84 88 92

40 96 100 105 106 108 110 115 118 122 126

50 130 134 138 142 147 151 156 160 165 170

60 175 180 186 187 189

combinatorial generation 15

ex(n; {C4, Codd}) (Zarankiewicz problem)

0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 6 7 9 10

10 12 14 16 18 21 22 24 26 29 31

20 34 36 39 42 45 48 52 53 56 58

30 61 64 67 70 74 77 81 84 88 92

40 96 100 105 106 108 110 115 118 122 126

50 130 134 138 142 147 151 156 160 165 170

60 175 180 186 187 189

Question: Is ex(n; {C4, Codd}) = ex(n; {C3, C4, C5}) for all n?

combinatorial generation 15

Block designs
Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Österg̊ard

For integers v, k, λ, a 2-(v, k, λ) design is a collection of k-subsets

(“blocks”) of a set of v “points”, such that every pair of points lie in

exactly λ blocks.

combinatorial generation 16

Block designs
Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Österg̊ard

For integers v, k, λ, a 2-(v, k, λ) design is a collection of k-subsets

(“blocks”) of a set of v “points”, such that every pair of points lie in

exactly λ blocks.

For example,

{{0, 2, 3}, {1, 2, 3}, {0, 1, 4}, {1, 2, 4}, {0, 3, 4},
{0, 1, 5}, {0, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 4, 5}}

is a 2-(6, 3, 2) design. Implied parameters are

b = the number of blocks = 10

r = the number of blocks containing each point = 5.

combinatorial generation 16

Block designs
Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Österg̊ard

For integers v, k, λ, a 2-(v, k, λ) design is a collection of k-subsets

(“blocks”) of a set of v “points”, such that every pair of points lie in

exactly λ blocks.

For example,

{{0, 2, 3}, {1, 2, 3}, {0, 1, 4}, {1, 2, 4}, {0, 3, 4},
{0, 1, 5}, {0, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 4, 5}}

is a 2-(6, 3, 2) design. Implied parameters are

b = the number of blocks = 10

r = the number of blocks containing each point = 5.

bk = vr, b
(k
2

)
= λ

(v
2

)
, b ≥ v.

combinatorial generation 16

Incidence matrix

Consider our 2-(6, 3, 2) design:

{{0, 2, 3}, {1, 2, 3}, {0, 1, 4}, {1, 2, 4}, {0, 3, 4},
{0, 1, 5}, {0, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 4, 5}}

combinatorial generation 17

Incidence matrix

Consider our 2-(6, 3, 2) design:

{{0, 2, 3}, {1, 2, 3}, {0, 1, 4}, {1, 2, 4}, {0, 3, 4},
{0, 1, 5}, {0, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 4, 5}}

The incidence matrix is

1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1

0 0 0 0 0 1 1 1 1 1



Each point (row) is a vector in {0, 1}b, all row (point) sums are r ,

all column (block) sums are k, and all row inner products are λ.

combinatorial generation 17

The project

Two designs D1, D2 are isomorphic if there is a bijection from the points

of D1 to the points of D2 which maps the multiset of blocks of D1 to

the multiset of blocks of D2.

An automorphism of a design is a permutation of the points which

preserves the multiset of blocks; i.e. an isomorphism of the design to

itself.

combinatorial generation 18

The project

Two designs D1, D2 are isomorphic if there is a bijection from the points

of D1 to the points of D2 which maps the multiset of blocks of D1 to

the multiset of blocks of D2.

An automorphism of a design is a permutation of the points which

preserves the multiset of blocks; i.e. an isomorphism of the design to

itself.

The aim of the project is to compile complete lists of nonisomorphic

2-(v, k, λ) designs for as many parameter sets as possible, and make

them available on the internet.

Almost all computations are done in duplicate, to enhance precision.

combinatorial generation 18

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.

combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0


combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0



combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0



combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1 0 0 1 0 1



combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1



combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1

0 0 0 0 0 1 1 1 1 1



combinatorial generation 19

Construction methods

Both methods worked by adding one row at a time, reducing the partial

designs by isomorphism class.



1 0 1 0 1 1 1 0 0 0

0 1 1 1 0 1 0 1 0 0

1 1 0 1 0 0 1 0 1 0

1 1 0 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0 1 1

0 0 0 0 0 1 1 1 1 1



Pruning of the search took into account additional information that

could be calculated, such as the possible amounts by which two blocks

can intersect. Also, when most of the rows are present, sometimes it

is possible to tell that completion is impossible.

combinatorial generation 19

Ivanov applied the orderly method, whereby the partial designs are kept

in a unique extremal form such that removing the last row from a

extremal form gives the extremal form of the smaller partial design.

combinatorial generation 20

Ivanov applied the orderly method, whereby the partial designs are kept

in a unique extremal form such that removing the last row from a

extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each

partial design a unique row such that removing the row gives the parent.

combinatorial generation 20

Ivanov applied the orderly method, whereby the partial designs are kept

in a unique extremal form such that removing the last row from a

extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each

partial design a unique row such that removing the row gives the parent.

In each case, the definitions are chosen so that many partial designs

can be seen to never lead to a completed design.

combinatorial generation 20

Ivanov applied the orderly method, whereby the partial designs are kept

in a unique extremal form such that removing the last row from a

extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each

partial design a unique row such that removing the row gives the parent.

In each case, the definitions are chosen so that many partial designs

can be seen to never lead to a completed design.

Determining the possibilities for the next row requires solving a set of

integer inequalities. Information about the solutions for each row can

be used to speed up the computation for additional rows.

combinatorial generation 20

Example: v = 9, k = 3, λ = 4, r = 16, b = 48

|Aut(D)| designs simple trans simtrans
1 16534655 275 0 0
2 47286 37 0 0
3 1127 6 0 0
4 1450 4 0 0
6 221 5 0 0
8 171 0 0 0
9 8 1 8 1
12 38 0 0 0
16 26 1 0 0
18 10 1 10 1
24 14 1 0 0
32 8 0 0 0
40 1 0 0 0
48 6 0 0 0
54 3 1 3 1
72 1 0 1 0
80 1 0 0 0
108 2 0 2 0
384 1 0 0 0
432 1 0 1 0
2880 1 0 0 0

16585031 designs generated (332 simple); 3476.64 sec

combinatorial generation 21

Results

https://zenodo.org/records/8303393

100 parameter sets

214 GB compressed

combinatorial generation 22

https://zenodo.org/records/8303393

Results

https://zenodo.org/records/8303393

100 parameter sets

214 GB compressed

We only provide complete compilations, though there is a program that

can make them at “random”.

combinatorial generation 22

https://zenodo.org/records/8303393

Results

https://zenodo.org/records/8303393

100 parameter sets

214 GB compressed

We only provide complete compilations, though there is a program that

can make them at “random”.

Often the number of designs becomes too large with only a modest

increase in the parameters:

2-(8,3,12) : about 4× 1012 designs

2-(9,4,9) : about 2× 1015 designs

2-(15,3,2) : about 1.5× 1021 designs

combinatorial generation 22

https://zenodo.org/records/8303393

