Some Examples of Combinatorial Generation

Brendan McKay
Australian National University

and various colleagues to be mentioned...

In honour of Gordon's $(61+\delta)$-th birthday

GPO Box 4, Canberra, ACT 260I
Telegrams a cables natuniv Canberra
Telephone 062-49 SIII
Telex Aa 62760 natun

```
Dear Gorda,
            Here tis.
Tage details:
    Deswity: 1600
    Lebels: NONE
    Gole: Ascir
    Records: Fixed length 80 bytes, blaakk lill
    Blocks: Fixed length 800 by Es \(=10\) recends
\(\frac{\text { Filles }}{\#}\)
            recards contents
            110 nanty.k compile \& load atl these
            935 nantil.e togettor to ras
            \(\left.\begin{array}{ll}748 & \begin{array}{c}\text { nanty.c } \\ \text { dreadnant.c }\end{array}\end{array}\right\}\) dreednant
            50 test.dat - sample input for dreadraut
            1322 cayleygraphs - Carleng grapks (as converged by dengt
            1020 trassgraphs - transitive grepts to 18 point
    Note that dreadrant is only sinitable for small tasks-you reed
    to call rantyl) yourself for unything serious.
    Please kuep a log of all the problems you lave running these
prograns, ever the most tivial. I'm trging to nake them as
portable as passible. Gaod luck.
Regands, Brendan
```

CONSTRUCTING THE CUBIC GRAPHS ON UP TO 20 VERTICES

BY

BRENDAN D. MCKAY

and
GORDON F. ROYLE

February 1985

Erendan D. Mcksy
Computer Science Deprortment
Australian Natianal University
Conterrs
AUSTRALIA

Gordan F. Rayle
Department of Mathemotics
University of Western Austrolio
Nedlands:
Western Australis 6000

Canonical construction path method

Example of triangle-free graphs.

Canonical construction path method

Example of triangle-free graphs.

Unrestricted extensions

Canonical construction path method

Example of triangle-free graphs.

Inequivalent extensions

Canonical construction path method

Example of triangle-free graphs.

Extremal graphs

Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without K_{r} can have is when it is a complete ($r-1$)-partite graph with near-equal sides.

Extremal graphs

Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without K_{r} can have is when it is a complete ($r-1$)-partite graph with near-equal sides.

$K_{2,3,3}$, extreme for K_{4}

Extremal graphs

Coauthor: Narjess Afzaly

In 1941, Turán proved that the most edges an n-vertex graph without K_{r} can have is when it is a complete ($r-1$)-partite graph with near-equal sides.

$K_{2,3,3}$, extreme for K_{4}

In general, if \mathcal{H} is a collection of graphs,

$$
\operatorname{ex}(n, \mathcal{H})=\left\{\begin{array}{l}
\text { the greatest number of edges that a graph on } \\
n \text { vertices can have without having a member } \\
\text { of } \mathcal{H} \text { as a subgraph. }
\end{array}\right.
$$

Extremal graphs (continued)

We will make graphs by adding one vertex at a time.
Usually, for large orders there are extremely many \mathcal{H}-free graphs but relatively few with close to ex (n, \mathcal{H}) edges.

Extremal graphs (continued)

We will make graphs by adding one vertex at a time.
Usually, for large orders there are extremely many \mathcal{H}-free graphs but relatively few with close to $\operatorname{ex}(n, \mathcal{H})$ edges.

For example, graphs on 25 vertices with no C_{4} or C_{5}.

edges	graphs
\ldots	
45	30651877057
46	895164804
47	15409643
48	176966
49	1799
50	17

Extremal graphs (continued)

If we remove a vertex from an extremal graph, the resulting graph might not be extremal.

So in order to generate the extremal graphs by adding one vertex at a time, it is necessary to also generate non-extremal graphs.

The definition of "canonical reduction" (i.e., which vertex is removed to make the parent) is designed so that the ancestors of an extremal graph are reasonably close to extremal.

Extremal graphs (continued)

If we remove a vertex from an extremal graph, the resulting graph might not be extremal.

So in order to generate the extremal graphs by adding one vertex at a time, it is necessary to also generate non-extremal graphs.

The definition of "canonical reduction" (i.e., which vertex is removed to make the parent) is designed so that the ancestors of an extremal graph are reasonably close to extremal.

This is done by a sequence of rules:

1. Choose a vertex of minimum degree.
2. If there is more than one vertex of minimum degree, choose one that is adjacent to the most other vertices of minimum degree.
3. Etc.
4. If no vertex is chosen by now, use nauty to choose one.

Extremal graphs (continued)

Graphs are classified into families $\mathcal{G}_{\mathcal{H}}\left(n, e, d, m, t ; d^{\prime}, m^{\prime}, t^{\prime}\right)$, where

- $n=$ the number of vertices
- $e=$ the number of edges
- $d=$ the minimum degree
- $m=$ the number of vertices of minimum degree
- $t=$ whether there are any adjacent vertices of minimum degree
- $n-1, e-d, d^{\prime}, m^{\prime}, t^{\prime}=$ those same parameters for the parent

Extremal graphs (continued)

Then a lot of lemmas are applied to identify possible parameters for the classes of the parent. For example, for $\mathcal{H}=\left\{C_{4}, C_{5}\right\}$, the parents of family $\mathcal{G}_{\mathcal{H}}(26,52,3,3, F ; 3,3, F)$ are calculated to lie in one of
$\mathcal{G}_{\mathcal{H}}(25,49,3,3, F ; 3,5, T)$,
$\mathcal{G}_{\mathcal{H}}(25,49,3,3, F ; 3,4, T)$,
$\mathcal{G}_{\mathcal{H}}(25,49,3,3, F ; 3,5, F)$, and
$\mathcal{G}_{\mathcal{H}}(25,49,3,3, F ; 3,4, F)$.

Extremal graphs (continued)

Since the computation is very long-running and families
$\mathcal{G}_{\mathcal{H}}\left(n, e, d, m, t ; d^{\prime}, m^{\prime}, t^{\prime}\right)$
appear as ancestors for many different output sizes, we store each such family on disk using a custom compression method that usually needs only $1-2$ bytes per graph.

Implementation

There is a controller program that decides which families are potentially needed as ancestors for a required output size, then makes the missing files using a multi-threaded worker process.
$\operatorname{ex}\left(n ;\left\{C_{4}, C_{5}\right\}\right)$

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	3	4	6	7	9	10	12
10	14	16	18	21	23	25	28	30	33	35
20	38	42	43	45	48	50	53	55	58	62
30	65	67	70	73	77	79	82	86	89	93
40	96	100	105	107	110					

Typical construction path for an extremal graph with 43 vertices:
Key: vertices,edges, green means extremal.
$1,0,2,1,3,2,4,3,5,4,6,6,7,7,8,9,9,10,10,12,11,14,12,16,13,18$, $14,20,15,22,16,24,17,26,18,28,19,30,20,33,21,35,22,38,23,40$, $24,43,25,46,26,49,27,52,28,56,29,58,30,61,31,64,32,67,33,70$, $34,74,35,77,36,81,37,84,38,88,39,92,40,96,41,100,42,105,43,107$
$\operatorname{ex}\left(n ;\left\{C_{4}\right\}\right)$

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	3	4	6	7	9	11	13
10	16	18	21	24	27	30	33	36	39	42
20	46	50	52	56	59	63	67	71	76	80
30	85	90	92	96	102	106	110	113	117	122
40	127									

$e x\left(n ;\left\{C_{3}, C_{4}\right\}\right)$

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	2	3	5	6	8	10	12
10	15	16	18	21	23	26	28	31	34	38
20	41	44	47	50	54	57	61	65	68	72
30	76	80	85	87	90	95	99	104	109	114
40	120	124	129	134	139	145	150	156	162	168
50	175	176	178							

$\operatorname{ex}\left(n ;\left\{C_{3}, C_{4}, C_{5}\right\}\right)$

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	2	3	4	6	7	9	10
10	12	14	16	18	21	22	24	26	29	31
20	34	36	39	42	45	48	52	53	56	58
30	61	64	67	70	74	77	81	84	88	92
40	96	100	105	106	108	110	115	118	122	126
50	130	134	138	142	147	151	156	160	165	170
60	175	180	186	187	189					

$\operatorname{ex}\left(n ;\left\{C_{4}, C_{\text {odd }}\right\}\right) \quad$ (Zarankiewicz problem)

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	2	3	4	6	7	9	10
10	12	14	16	18	21	22	24	26	29	31
20	34	36	39	42	45	48	52	53	56	58
30	61	64	67	70	74	77	81	84	88	92
40	96	100	105	106	108	110	115	118	122	126
50	130	134	138	142	147	151	156	160	165	170
60	175	180	186	187	189					

$\operatorname{ex}\left(n ;\left\{C_{4}, C_{\text {odd }}\right\}\right) \quad$ (Zarankiewicz problem)

	0	1	2	3	4	5	6	7	8	9
0	0	0	1	2	3	4	6	7	9	10
10	12	14	16	18	21	22	24	26	29	31
20	34	36	39	42	45	48	52	53	56	58
30	61	64	67	70	74	77	81	84	88	92
40	96	100	105	106	108	110	115	118	122	126
50	130	134	138	142	147	151	156	160	165	170
60	175	180	186	187	189					

Question: Is $\operatorname{ex}\left(n ;\left\{C_{4}, C_{\text {odd }}\right\}\right)=\operatorname{ex}\left(n ;\left\{C_{3}, C_{4}, C_{5}\right\}\right)$ for all n ?

Block designs

Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Östergảrd

For integers v, k, λ, a $2-(v, k, \lambda)$ design is a collection of k-subsets ("blocks") of a set of v "points", such that every pair of points lie in exactly λ blocks.

Block designs

Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Östergård

For integers v, k, λ, a $2-(v, k, \lambda)$ design is a collection of k-subsets ("blocks") of a set of v "points", such that every pair of points lie in exactly λ blocks.

For example,

$$
\begin{array}{r}
\{\{0,2,3\},\{1,2,3\},\{0,1,4\},\{1,2,4\},\{0,3,4\} \\
\{0,1,5\},\{0,2,5\},\{1,3,5\},\{2,4,5\},\{3,4,5\}\}
\end{array}
$$

is a $2-(6,3,2)$ design. Implied parameters are
$b=$ the number of blocks $=10$
$r=$ the number of blocks containing each point $=5$.

Block designs

Coauthors: Daniel Heinlein, Andrei Ivanov, Patric Östergård

For integers v, k, λ, a $2-(v, k, \lambda)$ design is a collection of k-subsets ("blocks") of a set of v "points", such that every pair of points lie in exactly λ blocks.

For example,

$$
\begin{array}{r}
\{\{0,2,3\},\{1,2,3\},\{0,1,4\},\{1,2,4\},\{0,3,4\} \\
\{0,1,5\},\{0,2,5\},\{1,3,5\},\{2,4,5\},\{3,4,5\}\}
\end{array}
$$

is a $2-(6,3,2)$ design. Implied parameters are
$b=$ the number of blocks $=10$
$r=$ the number of blocks containing each point $=5$.

$$
b k=v r, \quad b\binom{k}{2}=\lambda\binom{v}{2}, \quad b \geq v
$$

Incidence matrix

Consider our 2-($6,3,2$) design:

$$
\begin{aligned}
& \{\{0,2,3\},\{1,2,3\},\{0,1,4\},\{1,2,4\},\{0,3,4\}, \\
& \{0,1,5\},\{0,2,5\},\{1,3,5\},\{2,4,5\},\{3,4,5\}\}
\end{aligned}
$$

Incidence matrix

Consider our 2-($6,3,2$) design:

$$
\begin{gathered}
\{\{0,2,3\},\{1,2,3\},\{0,1,4\},\{1,2,4\},\{0,3,4\} \\
\{0,1,5\},\{0,2,5\},\{1,3,5\},\{2,4,5\},\{3,4,5\}\}
\end{gathered}
$$

The incidence matrix is

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Each point (row) is a vector in $\{0,1\}^{b}$, all row (point) sums are r, all column (block) sums are k, and all row inner products are λ.

The project

Two designs D_{1}, D_{2} are isomorphic if there is a bijection from the points of D_{1} to the points of D_{2} which maps the multiset of blocks of D_{1} to the multiset of blocks of D_{2}.

An automorphism of a design is a permutation of the points which preserves the multiset of blocks; i.e. an isomorphism of the design to itself.

The project

Two designs D_{1}, D_{2} are isomorphic if there is a bijection from the points of D_{1} to the points of D_{2} which maps the multiset of blocks of D_{1} to the multiset of blocks of D_{2}.

An automorphism of a design is a permutation of the points which preserves the multiset of blocks; i.e. an isomorphism of the design to itself.

The aim of the project is to compile complete lists of nonisomorphic $2-(v, k, \lambda)$ designs for as many parameter sets as possible, and make them available on the internet.

Almost all computations are done in duplicate, to enhance precision.

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{lllllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & &
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & &
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
& & & & & & & & & \\
& & & & & & & & &
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
& & & & & & & &
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Construction methods

Both methods worked by adding one row at a time, reducing the partial designs by isomorphism class.

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Pruning of the search took into account additional information that could be calculated, such as the possible amounts by which two blocks can intersect. Also, when most of the rows are present, sometimes it is possible to tell that completion is impossible.

Ivanov applied the orderly method, whereby the partial designs are kept in a unique extremal form such that removing the last row from a extremal form gives the extremal form of the smaller partial design.

Ivanov applied the orderly method, whereby the partial designs are kept in a unique extremal form such that removing the last row from a extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each partial design a unique row such that removing the row gives the parent.

Ivanov applied the orderly method, whereby the partial designs are kept in a unique extremal form such that removing the last row from a extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each partial design a unique row such that removing the row gives the parent.

In each case, the definitions are chosen so that many partial designs can be seen to never lead to a completed design.

Ivanov applied the orderly method, whereby the partial designs are kept in a unique extremal form such that removing the last row from a extremal form gives the extremal form of the smaller partial design.

McKay applied the canonical construction path method that gives each partial design a unique row such that removing the row gives the parent.

In each case, the definitions are chosen so that many partial designs can be seen to never lead to a completed design.

Determining the possibilities for the next row requires solving a set of integer inequalities. Information about the solutions for each row can be used to speed up the computation for additional rows.

Example: $v=9, k=3, \lambda=4, r=16, b=48$

$\|A u t(D)\|$	designs	simple	trans	simtrans
1	16534655	275	0	0
2	47286	37	0	0
3	1127	6	0	0
4	1450	4	0	0
6	221	5	0	0
8	171	0	0	0
9	8	1	8	1
12	38	0	0	0
16	26	1	0	0
18	10	1	10	1
24	14	1	0	0
32	8	0	0	0
40	1	0	0	0
48	6	0	0	0
54	3	1	3	1
72	1	0	1	0
80	1	0	0	0
108	2	0	2	0
384	1	0	0	0
432	1	0	1	0
2880	1	0	0	0

16585031 designs generated (332 simple); 3476.64 sec

Results

https://zenodo.org/records/8303393
100 parameter sets
214 GB compressed

Results

https://zenodo.org/records/8303393
100 parameter sets
214 GB compressed

We only provide complete compilations, though there is a program that can make them at "random".

Results

https://zenodo.org/records/8303393
100 parameter sets
214 GB compressed

We only provide complete compilations, though there is a program that can make them at "random".

Often the number of designs becomes too large with only a modest increase in the parameters:
$2-(8,3,12)$: about 4×10^{12} designs
$2-(9,4,9)$: about 2×10^{15} designs
$2-(15,3,2)$: about 1.5×10^{21} designs

