Automorphisms of direct products of circulant graphs

Đorđe Mitrović

University of Auckland

Supervisors: Gabriel Verret, Jeroen Schillewaert, Florian Lehner

Joint work with Ademir Hujdurović (University of Primorska) and Dave Witte Morris (University of Lethbridge)
UNIVERSITY OF AUCKLAND Waipapa Taumata Rau NEW ZEALAND

All graphs are finite, simple and undirected.
An automorphism of a graph $X=(V, E)$ is a permutation of V that preserves E.
$\operatorname{Aut}(X)$ is the automorphism group of a graph X.

Twins have the same neighbours.

A graph is twin-free if it does not contain any twins.

X

K_{2}

D

Direct products of graphs

$$
\begin{aligned}
V(X \times Y) & =V(X) \times V(Y) \\
\left(x_{1}, y_{1}\right) \sim_{X \times Y}\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1} \sim_{X} x_{2} \text { and } y_{1} \sim_{Y} y_{2}
\end{aligned}
$$

Direct products of graphs

$$
\begin{aligned}
V(X \times Y) & =V(X) \times V(Y) \\
\left(x_{1}, y_{1}\right) \sim_{X \times Y}\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1} \sim_{X} x_{2} \text { and } y_{1} \sim_{Y} y_{2}
\end{aligned}
$$

Direct products of graphs

$$
V(X \times Y)=V(X) \times V(Y)
$$

$$
\left(x_{1}, y_{1}\right) \sim_{X \times Y}\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1} \sim_{X} x_{2} \text { and } y_{1} \sim_{Y} y_{2}
$$

Direct products of graphs

$$
\begin{aligned}
V(X \times Y) & =V(X) \times V(Y) \\
\left(x_{1}, y_{1}\right) \sim_{X \times Y}\left(x_{2}, y_{2}\right) & \Longleftrightarrow x_{1} \sim_{X} x_{2} \text { and } y_{1} \sim_{Y} y_{2}
\end{aligned}
$$

What is $\operatorname{Aut}(X \times Y)$?

$\operatorname{Aut}(X) \times \operatorname{Aut}(Y) \leq \operatorname{Aut}(X \times Y)$

Cocces,

(What else can $\operatorname{Aut}(X \times Y)$ contain?)

Dörfler's theorem (1974)

(a complete answer when both graphs are non-bipartite)

Let X and Y be connected, non-bipartite, twin-free graphs with unique prime decompositions
$X=X_{1} \times \ldots \times X_{n}$ and $Y=Y_{1} \times \ldots \times Y_{m}$. Then $\operatorname{Aut}(X \times Y)$ is generated by

- automorphisms of X,
- automorphisms of Y,
- permutations of isomorphic factors $X_{i} \cong Y_{j}$.

$$
\operatorname{Aut}(X) \times \operatorname{Aut}(Y) \leq \operatorname{Aut}(X \times Y)
$$

Failure of uniqueness of the prime factorization wrt \times for bipartite graphs

When is $\operatorname{Aut}(X \times Y)=\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$?

(when X is non-bipartite and Y is bipartite)

Reduction to the case $Y=K_{2}$

Let X be a connected, non-bipartite, twin-free graph such that

$$
\operatorname{Aut}\left(X \times K_{2}\right)=\operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right)
$$

Then for every connected, bipartite, twin-free graph Y

$$
\operatorname{Aut}(X \times Y)=\operatorname{Aut}(X) \times \operatorname{Aut}(Y)
$$

(a folklor result)

+ some mild
technical conditions

Canonical bipartite double cover

Main observation

$$
\operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right) \leq \operatorname{Aut}\left(X \times K_{2}\right)
$$

Main issue

Equality does not always hold!!!

A graph X is called unstable if

$$
\operatorname{Aut}\left(X \times K_{2}\right) \neq \operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right)
$$

A graph X is called non-trivially unstable if it is

1. connected, non-bipartite, twin-free, and
2. $\operatorname{Aut}\left(X \times K_{2}\right) \neq \operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right)$

Which circulant graphs are non-trivially unstable? (Wilson 2008)

A circulant graph $\operatorname{Circ}(n, S)$ is a Cayley graph of the cyclic group \mathbb{Z}_{n}.

A circulant graph $\operatorname{Circ}(n, S)$ is a Cayley graph of the cyclic group \mathbb{Z}_{n}.

A circulant graph $\operatorname{Circ}(n, S)$ is a Cayley graph of the cyclic group \mathbb{Z}_{n}.

A circulant graph $\operatorname{Circ}(n, S)$ is a Cayley graph of the cyclic group \mathbb{Z}_{n}.

Wilson conditions

sufficient conditions for a circulant graph to be

 unstable
Wilson condition (C.4)

$X=\operatorname{Circ}(n, S), n$ even

If there exists an $m \in \mathbb{Z}_{n}^{\times}$such that
$\frac{n}{2}+m S=S$, then X is unstable.

$$
\phi(x, i)= \begin{cases}(m x, 0) & \text { if } i=0 \\ \left(m x+\frac{n}{2}, 1\right) & \text { if } i=1\end{cases}
$$

$$
\begin{gathered}
\phi \in \operatorname{Aut}\left(X \times K_{2}\right) \\
\phi \notin \operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right)
\end{gathered}
$$

Corrections of Wilson conditions

- Qin-Xia-Zhou (2019) updated Wilson condition (C.2) to (C.2').
- Hujdurović-Mitrović-Morris (2021) updated Wilson condition (C.3) to (C.3').

Wilson's conjecture

Every non-trivially unstable circulant graph satisfies at least one of the Wilson conditions.

Circulants of odd order

Theorem (Fernandez-Hujdurović 2022)
There are no non-trivially unstable circulants of odd order.

Wilson's conjecture is vacuously true for circulants of odd order!

Circulants of order twice an odd prime

Theorem (Hujdurović-Mitrović-Morris 2021)
Every non-trivially unstable circulants of order $2 p, p$ an odd prime, satisfies Wilson condition (C.4).

Reminder (Wilson condition (C.4))

$$
\frac{n}{2}+m S=S \text { with } m \in \mathbb{Z}_{n}^{\times}
$$

Circulants of order twice an odd prime

Theorem (Hujdurović-Mitrović-Morris 2021)
Every non-trivially unstable circulants of order $2 p, p$ an odd prime, satisfies Wilson condition (C.4).

> Wilson's conjecture is true for circulants of order twice a prime!

Circulants of low valency

Theorem (Hujdurović-Mitrović-Morris 2023+)

Every non-trivially unstable circulants of valency at most 7
satisfies at least one Wilson condition.

Wilson's conjecture is true for
circulants of valency at most 7 !

Circulants of low valency

Theorem (Hujdurović-Mitrović-Morris 2023+)

Every non-trivially unstable circulants of valency at most 7 satisfies at least one Wilson condition.

A classification has been obtained for each valency at most 7 .

- For each valency, we provide a complete list of connection sets.
- For each graph, we find a Wilson condition it satisfies.

An example of a classification result

Theorem (Hujdurović-Mitrović-Morris 2023+)
A 5-valent circulant is unstable if and only if it is trivially unstable or one of the following

1. $\operatorname{Circ}(12 k,\{ \pm s, \pm 2 k, 6 k\})$ with s odd, satisfying Wilson condition (C.1);
2. $\operatorname{Circ}(8,\{ \pm 1, \pm 3,4\})$ satisfying Wilson condition (C.3').

Non-trivially unstable circulants of low valency

- valency ≤ 3 : none
- valency 4: two infinite families satisfying (C.4)
- valency 5: one infinite family (C.1); one sporadic example (C.3')
- valency 6: seven infinite families (C.1) - (C.4)
- valency 7: six infinite families (C.1) - (C.3)

Theorem (Hujdurović-Mitrović-Morris 2023+)
Every non-trivially unstable circulants of valency at most 7 satisfies at least one Wilson condition.

This bound is sharp!

$$
\operatorname{Circ}(48,\{ \pm, 3, \pm 4, \pm 6, \pm 21\})
$$

1. 8 -valent
2. non-trivially unstable
3. does not satisfy any of the Wilson conditions
$\operatorname{Circ}(48,\{ \pm, 3, \pm 4, \pm 6, \pm 21\})$
4. 8 -valent
5. non-trivially unstable
6. does not satisfy any of the Wilson conditions

Wilson's conjecture is false in general!

Generalisations of Wilson conditions

Generalisation of the Wilson condition (C.4)

Theorem (Hujdurović-Mitrović-Morris 2021)

$$
\text { If } X=\operatorname{Circ}(n, S) \cong \operatorname{Circ}\left(n, S+\frac{n}{2}\right) \text { then } X \text { is unstable. }
$$

Generalised Wilson condition (C.4)

Theorem (Hujdurović-Mitrović-Morris 2021)

$$
\text { If } X=\operatorname{Circ}(n, S) \cong \operatorname{Circ}\left(n, S+\frac{n}{2}\right) \text { then } X \text { is unstable. }
$$

For $\ell \geq 4$, consider $X=\operatorname{Circ}(n, S)$ with

$$
n=3 \cdot 2^{\ell} \text { and } S=\left\{ \pm 3, \pm 6, \pm \frac{n}{12}, \frac{n}{2} \pm 3\right\}
$$

1. X is 8 -valent and non-trivially unstable.
2. X satisfies the Generalised Wilson condition (C.4).
3. X does not satisfy any of the original Wilson conditions.

Other generalisations

$X=\operatorname{Circ}(n, S)$
$H, K \leq \mathbb{Z}_{n}$ are non-trivial with $|K|$ even; $K_{o}=K \backslash 2 K$.

Theorem (Hujdurović-Mitrović-Morris 2021)
If either

- $S+H \subseteq S \cup\left(K_{o}+H\right)$ and $H \cap K_{o}=\varnothing$, or
- $\left(S \backslash K_{o}\right)+H \subseteq S \cup K_{o}$, and either $|H| \neq 2$, or $|K|$ is divisible by 4 , then X is unstable.

Theorem (Hujdurović-Mitrović-Morris 2021)
If either

- $S+H \subseteq S \cup\left(K_{o}+H\right)$ and $H \cap K_{o}=\varnothing$, or
- $\left(S \backslash K_{o}\right)+H \subseteq S \cup K_{o}$, and either $|H| \neq 2$, or $|K|$ is divisible by 4 , then X is unstable.

The above result generalises Wilson conditions (C.1), (C.2') and (C.3) .

Each of the Wilson conditions (C.1), (C.2'), (C.3'), (C.4) has been generalised.

Theorem (Hujdurović-Mitrović-Morris 2021)
If either

- $S+H \subseteq S \cup\left(K_{o}+H\right)$ and $H \cap K_{o}=\varnothing$, or
- $\left(S \backslash K_{o}\right)+H \subseteq S \cup K_{o}$, and either $|H| \neq 2$, or $|K|$ is divisible by 4 , then X is unstable.

Theorem (Hujdurović-Mitrović-Morris 2021)

$$
\text { If } X=\operatorname{Circ}(n, S) \cong \operatorname{Circ}\left(n, S+\frac{n}{2}\right) \text { then } X \text { is unstable. }
$$

Check the paper for more!

Computational results

Every non-trivially unstable circulant of order at most 50 satisfies at least one generalisation we introduced.

Recent developments

Analogues of the Wilson conjecture for other graph families turned out to be true!

- Generalised Petersen graphs - Qin, Xia and Zhou (2020)
- Toroidal graphs and Triangular grids - Dave Witte Morris (2023)
- Rose-Window graphs - Ahanjideh, Kovács, Kutnar (2023)

Background

- $X \times K_{2}$ plays a major role in understanding $\operatorname{Aut}(X \times Y)$ for X non-bipartite and Y bipartite
- X is non-trivially unstable if it is connected, non-bipartite, twin-free, and $\operatorname{Aut}\left(X \times K_{2}\right) \neq \operatorname{Aut}(X) \times \operatorname{Aut}\left(K_{2}\right)$
- Wilson's conjecture: Every non-trivially unstable circulant graph satisfies at least one Wilson condition.

Results

- Generalisations of Wilson conditions
- New infinite families of counterexamples to Wilson's conjecture
- Wilson's conjecture is true for
- circulants of order $2 p$
- circulants of valency at most 7

Thank you for your attention!

Additional slides

Wilson conditions

$X=\operatorname{Circ}(n, S), n$ even. $S_{e}=S \cap 2 \mathbb{Z}_{n}, S_{o}=S \backslash S_{e}$

1. There exists a non-zero element $h \in 2 \mathbb{Z}_{n}$ such that $h+S_{e}=S_{e}$.
2. n is divisible by 4 , and there exists $h \in 1+2 \mathbb{Z}_{n}$ such

- $2 h+S_{o}=S_{o}$,
- $\forall s \in S$ with $s \equiv 0$ or $-h(\bmod 4)$, we have $s+h \in S$.

3. There exists a subgroup $H \leq \mathbb{Z}_{n}$ such that the set

$$
R=\{s \in S \mid s+H \nsubseteq S\},
$$

is non-empty and has the property that if $d=\operatorname{gcd}(R \cup\{n\})$, then $\frac{n}{d}$ is even, $\frac{r}{d}$ is odd for all $r \in R$, and either $H \nsubseteq d \mathbb{Z}_{n}$ or $H \subseteq 2 d \mathbb{Z}_{n}$.
4. There exists $m \in \mathbb{Z}_{n}^{\times}$, such that $\frac{n}{2}+m S=S$.

