Automorphisms of direct products of circulant graphs

TE PŪTEA RANGAHAU A MARSDEN

- **Đorđe Mitrović**
- **University of Auckland**
- Supervisors: Gabriel Verret, Jeroen Schillewaert, Florian Lehner
- Joint work with Ademir Hujdurović (University of Primorska) and Dave Witte Morris (University of Lethbridge)
 - 45th Australiasian Combinatorics Conference Perth 2023

All graphs are finite An **automorphism** of a graph X = (**Aut**(X) is the **automo**

All graphs are finite, simple and undirected.

An automorphism of a graph X = (V, E) is a permutation of V that preserves E.

Aut(X) is the automorphism group of a graph *X*.

Twins have the same neighbours.

A graph is **twin-free** if it does not contain any twins.

 \mathcal{D}

- $V(X \times Y) = V(X) \times V(Y)$
- $(x_1, y_1) \sim_{X \times Y} (x_2, y_2) \iff x_1 \sim_X x_2 \text{ and } y_1 \sim_Y y_2$

- $V(X \times Y) = V(X) \times V(Y)$
- $(x_1, y_1) \sim_{X \times Y} (x_2, y_2) \iff x_1 \sim_X x_2 \text{ and } y_1 \sim_Y y_2$

$V(X \times Y) = V(X) \times V(Y)$

$(x_1, y_1) \sim_{X \times Y} (x_2, y_2) \iff x_1 \sim_X x_2 \text{ and } y_1 \sim_Y y_2$

$V(X \times Y) = V(X) \times V(Y)$

$(x_1, y_1) \sim_{X \times Y} (x_2, y_2) \iff x_1 \sim_X x_2 \text{ and } y_1 \sim_Y y_2$

What is $Aut(X \times Y)$?

(What else can $Aut(X \times Y)$ contain?)

When does $Aut(X) \times Aut(Y) = Aut(X \times Y)$?

Dörfler's theorem (1974)

(a complete answer when both graphs are non-bipartite)

Failure of uniqueness of the prime factorization wrt × for bipartite graphs

When is $Aut(X \times Y) = Aut(X) \times Aut(Y)$?

(when *X* is non-bipartite and *Y* is bipartite)

Reduction to the case $Y = K_2$

(a folklor result)

- Let X be a connected, non-bipartite, twin-free graph such that
 - $\operatorname{Aut}(X \times K_2) = \operatorname{Aut}(X) \times \operatorname{Aut}(K_2)$
 - $Aut(X \times Y) = Aut(X) \times Aut(Y)$

+ some mild technical conditions

Main observation

$\operatorname{Aut}(X) \times \operatorname{Aut}(K_2) \leq \operatorname{Aut}(X \times K_2)$

Mainissue

Equality does not always hold!!!

A graph *X* is called unstable if Aut $(X \times K_2) \neq$ Aut $(X) \times$ Aut (K_2)

Ag	raph X is called n
1.	connected, nor
2.	$\operatorname{Aut}(X \times K_2)$

non-trivially unstable if it is n-bipartite, twin-free, and $(x_2) \neq Aut(X) \times Aut(K_2)$

Which circulant graphs are non-trivially unstable? (Wilson 2008)

sufficient conditions for a circulant graph to be unstable

Wilson conditions

Wilson condition (C.4)

$X = \operatorname{Circ}(n, S), n \text{ even}$

If there exists an $m \in \mathbb{Z}_n^{\times}$ such that $\frac{n}{2} + mS = S$, then X is unstable.

$$\phi(x,i) = \begin{cases} (mx,0) & \text{if } i = 0\\ \left(mx + \frac{n}{2}, 1\right) & \text{if } i = 1 \end{cases}$$

$\phi \in \operatorname{Aut}(X \times K_2)$ $\phi \notin \operatorname{Aut}(X) \times \operatorname{Aut}(K_2)$

Corrections of Wilson conditions

- Qin-Xia-Zhou (2019) updated Wilson condition (C.2) to (C.2').

• Hujdurović-Mitrović-Morris (2021) updated Wilson condition (C.3) to (C.3').

Wilson's conjecture

Every non-trivially unstable circulant graph satisfies at least one of the Wilson conditions.

Circulants of odd order

Theorem (Fernandez-Hujdurović 2022)

There are no non-trivially unstable circulants of odd order.

Wilson's conjecture is vacuously true for circulants of odd order!

Circulants of order twice an odd prime

Theorem (Hujdurović-Mitrović-Morris 2021)

Every non-trivially unstable circulants of order 2*p*, *p* an odd prime,

satisfies Wilson condition (C.4).

Reminder (Wilson condition (C.4))

$$\frac{n}{2} + m$$

S = S with $m \in \mathbb{Z}_n^{\times}$

Circulants of order twice an odd prime

Theorem (Hujdurović-Mitrović-Morris 2021)

Every non-trivially unstable circulants of order 2*p*, *p* an odd prime,

satisfies Wilson condition (C.4).

Wilson's circulants

Wilson's conjecture is true for

circulants of order twice a prime!

Circulants of low valency

Theorem (Hujdurović-Mitrović-Morris 2023+)

Every non-trivially unstable circulants of valency at most 7 satisfies at least one Wilson condition.

circulants of valency at most 7!

Wilson's conjecture is true for

Circulants of low valency

Theorem (Hujdurović-Mitrović-Morris 2023+)

- For each valency, we provide a **complete list of connection sets**.
- For each graph, we find a Wilson condition it satisfies.

- Every non-trivially unstable circulants of valency at most 7 satisfies at least one Wilson condition.

A classification has been obtained for each valency at most 7.

An example of a classification result

Theorem (Hujdurović-Mitrović-Morris 2023+)

- Circ(12k, { $\pm s$, $\pm 2k$, 6k}) with s odd, satisfying Wilson condition (C.1);
- Circ(8, $\{\pm 1, \pm 3, 4\}$) satisfying Wilson condition (C.3'). 2.

A 5-valent circulant is unstable if and only if it is trivially unstable or one of the following

Non-trivially unstable circulants of low valency

- valency ≤ 3 : none
- **valency** 4: **two** infinite families satisfying (*C*.4)
- **valency 5**: **one** infinite family (*C*.1); **one sporadic** example (*C*.3')
- valency 6: seven infinite families (C.1) (C.4)
- valency 7: six infinite families (C.1) (C.3')

Theorem (Hujdurović-Mitrović-Morris 2023+)

- $Circ(48, \{\pm, 3, \pm 4, \pm 6, \pm 21\})$
- 8-valent 1.
- non-trivially unstable 2.
- 3. does not satisfy any of the Wilson conditions

Every non-trivially unstable circulants of valency at most 7 satisfies at least one Wilson condition.

This bound is sharp!

$Circ(48, \{\pm, 3, \pm 4, \pm 6, \pm 21\})$

- 8-valent 1.
- non-trivially unstable 2.
- 3.

does not satisfy any of the Wilson conditions

Wilson's conjecture is false in general!

Generalisations of Wilson conditions

Generalisation of the Wilson condition (C.4)

Theorem (Hujdurović-Mitrović-Morris 2021)

If $X = \operatorname{Circ}(n, S) \cong \operatorname{Circ}$

$$\left(n, S + \frac{n}{2}\right)$$
 then *X* is unstable.

Generalised Wilson condition (C.4)

Theorem (Hujdurović-Mitrović-Morris 2021)

If $X = \operatorname{Circ}(n, S) \cong \operatorname{Circ}$

For $\ell \ge 4$, consider X = Circ(n, S) with $n = 3 \cdot 2^{\ell}$ and $S = \{\pm 3, \pm 6\}$

- X is 8-valent and non-trivially unstable.
- 2. X satisfies the Generalised Wilson condition (C.4).

X does not satisfy any of the original Wilson conditions. 3.

$$\left(n, S + \frac{n}{2}\right)$$
 then *X* is unstable.

$$= \{\pm 3, \pm 6, \pm \frac{n}{12}, \frac{n}{2} \pm 3\}$$

Other generalisations

$X = \operatorname{Circ}(n, S)$

$H, K \leq \mathbb{Z}_n$ are non-trivial with |K| even; $K_o = K \setminus 2K$.

Theorem (Hujdurović-Mitrović-Morris 2021)

If either

- $S + H \subseteq S \cup (K_o + H)$ and $H \cap K_o = \emptyset$, or
- $(S \setminus K_o) + H \subseteq S \cup K_o$, and either $|H| \neq 2$, or |K| is divisible by 4,

then X is unstable.

Theorem (Hujdurović-Mitrović-Morris 2021)

If either

- $S + H \subseteq S \cup (K_o + H)$ and $H \cap K_o = \emptyset$, or

then X is unstable.

The above result generalises Wilson conditions (C.1), (C.2') and (C.3').

• $(S \setminus K_o) + H \subseteq S \cup K_o$, and either $|H| \neq 2$, or |K| is divisible by 4,

Each of the Wilson conditions (C.1), (C.2'), (C.3'), (C.4) has been generalised.

Theorem (Hujdurović-Mitrović-Morris 2021)

If either

- $S + H \subseteq S \cup (K_o + H)$ and H

then X is **unstable**.

Theorem (Hujdurović-Mitrović-Morris 2021)

$$\cap K_o = \emptyset$$
, or

• $(S \setminus K_o) + H \subseteq S \cup K_o$, and either $|H| \neq 2$, or |K| is divisible by 4,

If $X = \operatorname{Circ}(n, S) \cong \operatorname{Circ}\left(n, S + \frac{n}{2}\right)$ then X is unstable.

Check the paper for more!

Every non-trivially unstable circulant of order at most 50 satisfies at least one generalisation we introduced.

Recent developments

- Generalised Petersen graphs Qin, Xia and Zhou (2020)
- Toroidal graphs and Triangular grids Dave Witte Morris (2023)
- **Rose-Window graphs** Ahanjideh, Kovács, Kutnar (2023)

Analogues of the Wilson conjecture for other graph families turned out to be true!

Background

- $X \times K_2$ plays a major role in understanding Aut $(X \times Y)$ for X non-bipartite and Y bipartite

Results

- Generalisations of Wilson conditions
- New infinite families of **counterexamples** to Wilson's conjecture
- Wilson's conjecture is **true** for
 - circulants of order 2p
 - circulants of valency at most 7

• X is non-trivially unstable if it is connected, non-bipartite, twin-free, and Aut $(X \times K_2) \neq Aut(X) \times Aut(K_2)$ • Wilson's conjecture: Every non-trivially unstable circulant graph satisfies at least one Wilson condition.

Additional slides

Wilson conditions $X = \operatorname{Circ}(n, S), n \text{ even. } S_{\rho} = S \cap 2\mathbb{Z}_n, S_{\rho} = S \setminus S_{\rho}$

- There exists a non-zero element $h \in 2\mathbb{Z}_n$ such that $h + S_e = S_e$. 1.
- *n* is divisible by 4, and there exists $h \in 1 + 2\mathbb{Z}_n$ such 2.

•
$$2h + S_o = S_o$$
,

- $\forall s \in S$ with $s \equiv 0$ or $-h \pmod{4}$, we have $s + h \in S$.
- There exists a subgroup $H \leq \mathbb{Z}_n$ such that the set 3. $R = \{ s \in S \mid s + H \nsubseteq S \},\$

- $\frac{1}{d}$ is odd for all $r \in R$, and either $H \nsubseteq d\mathbb{Z}_n$ or $H \subseteq 2d\mathbb{Z}_n$.
- There exists $m \in \mathbb{Z}_n^{\times}$, such that 4.

is non-empty and has the property that if $d = gcd(R \cup \{n\})$, then $\frac{n}{d}$ is even,

$$t \frac{n}{2} + mS = S.$$