Quadratic Forms in Design Theory

Padraig Ó Catháin

Dublin City University

Australasian Combinatorics Conference
University of Western Australia
15 December 2023

- Joint work with Oliver Gnilke, Oktay Olmez \& Guillermo Nunez Ponasso
- Inspired by a problem of Darryn Bryant
- Supported by the Faculty of Humanities Travel Grant (DCU) \& Teaching and Learning grant from Technical University of the Shannon (TUS)

The symmetric mosaic problem

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Question: For which parameters does there exist a mosaic of symmetric designs?

- A symmetric balanced incomplete-block design (SBIBD, design) with parameters (v, k, λ) has v points and v blocks. Each block is incident with k points, and each pair of points are jointly incident with λ blocks.
- Finite projective planes are designs with parameters $\left(n^{2}+n+1, n+1,1\right)$.
- A (v, k, λ) design is described by its incidence matrix, which is a square $\{0,1\}$-matrix satisfying

$$
M M^{\top}=(k-\lambda) I_{v}+\lambda J_{v}
$$

The symmetric mosaic problem

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Question: For which parameters does there exist a mosaic of symmetric designs?

Theorem
If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

Theorem
If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

- $\lambda_{1}=\frac{k(k-1)}{v-1}$ and $\lambda_{2}=\frac{(k+1) k}{v-1}$ are integers.

Theorem

If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

- $\lambda_{1}=\frac{k(k-1)}{v-1}$ and $\lambda_{2}=\frac{(k+1) k}{v-1}$ are integers.
- So is their difference, so $v-1$ divides $2 k$.

Theorem

If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

- $\lambda_{1}=\frac{k(k-1)}{v-1}$ and $\lambda_{2}=\frac{(k+1) k}{v-1}$ are integers.
- So is their difference, so $v-1$ divides $2 k$.
- But $k \leqslant \frac{v-1}{2}$ so the parameters are $(4 t-1,2 t-1, t-1)$.

Theorem

If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

- $\lambda_{1}=\frac{k(k-1)}{v-1}$ and $\lambda_{2}=\frac{(k+1) k}{v-1}$ are integers.
- So is their difference, so $v-1$ divides $2 k$.
- But $k \leqslant \frac{v-1}{2}$ so the parameters are $(4 t-1,2 t-1, t-1)$.

$$
(M+I)(M+I)^{\top}=M M^{\top}+M+M^{\top}+I=\alpha I+\beta J
$$

so $M+M^{\top}=J-I$ and M is skew.

Theorem

If M and $M+I$ are both symmetric designs, then M is the incidence matrix of a skew-Hadamard design.

- $\lambda_{1}=\frac{k(k-1)}{v-1}$ and $\lambda_{2}=\frac{(k+1) k}{v-1}$ are integers.
- So is their difference, so $v-1$ divides $2 k$.
- But $k \leqslant \frac{v-1}{2}$ so the parameters are $(4 t-1,2 t-1, t-1)$.

$$
(M+I)(M+I)^{\top}=M M^{\top}+M+M^{\top}+I=\alpha I+\beta J
$$

so $M+M^{\top}=J-I$ and M is skew.

- Such designs exist when $4 t-1$ is a prime power. Conjectured to exist for all integers $4 t-1$.

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?
- Clear necessary condition: designs with parameters $\left(v, k_{1}, \lambda_{1}\right)$ and (v, k_{2}, λ_{2}) should exist such that

$$
\lambda_{1+2}=\frac{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{2}-1\right)}{v-1}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1} .
$$

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?
- Clear necessary condition: designs with parameters $\left(v, k_{1}, \lambda_{1}\right)$ and (v, k_{2}, λ_{2}) should exist such that

$$
\lambda_{1+2}=\frac{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{2}-1\right)}{v-1}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1} .
$$

- Bruck-Ryser-Chowla (easy part): If v is even then $k_{i}-\lambda_{i}$ is a square.
Proof: $\operatorname{det}\left(M M^{\top}\right)=\operatorname{det}((k-\lambda) I+\lambda J)=k^{2}(k-\lambda)^{v-1}$ is square.

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?
- Clear necessary condition: designs with parameters $\left(v, k_{1}, \lambda_{1}\right)$ and (v, k_{2}, λ_{2}) should exist such that

$$
\lambda_{1+2}=\frac{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{2}-1\right)}{v-1}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1} .
$$

- Bruck-Ryser-Chowla (easy part): If v is even then $k_{i}-\lambda_{i}$ is a square.
Proof: $\operatorname{det}\left(M M^{\top}\right)=\operatorname{det}((k-\lambda) I+\lambda J)=k^{2}(k-\lambda)^{v-1}$ is square.
- One potential parameter set with $v \leqslant 10,000$:
$(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828)$.

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?
- Clear necessary condition: designs with parameters (v, k_{1}, λ_{1}) and $\left(v, k_{2}, \lambda_{2}\right)$ should exist such that

$$
\lambda_{1+2}=\frac{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{2}-1\right)}{v-1}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1} .
$$

- Bruck-Ryser-Chowla (easy part): If v is even then $k_{i}-\lambda_{i}$ is a square.
Proof: $\operatorname{det}\left(M M^{\top}\right)=\operatorname{det}((k-\lambda) I+\lambda J)=k^{2}(k-\lambda)^{v-1}$ is square.
- One potential parameter set with $v \leqslant 10,000$:

$$
(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828) .
$$

- Conjecture: There are no even symmetric mosaics (on three colours).

Non-trivial mosaics: v even

- One infinite family of mosaics, in any other mosaic all the designs are non-trivial $(0<\lambda<v-2)$. Are there any other examples?
- Clear necessary condition: designs with parameters $\left(v, k_{1}, \lambda_{1}\right)$ and (v, k_{2}, λ_{2}) should exist such that

$$
\lambda_{1+2}=\frac{\left(k_{1}+k_{2}\right)\left(k_{1}+k_{2}-1\right)}{v-1}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1} .
$$

- Bruck-Ryser-Chowla (easy part): If v is even then $k_{i}-\lambda_{i}$ is a square.
Proof: $\operatorname{det}\left(M M^{\top}\right)=\operatorname{det}((k-\lambda) I+\lambda J)=k^{2}(k-\lambda)^{v-1}$ is square.
- One potential parameter set with $v \leqslant 10,000$:

$$
(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828) .
$$

- Conjecture: There are no even symmetric mosaics (on three colours).
- Before the end of the talk, we'll rule out the displayed example.

Non-trivial mosaics: v odd

- The skew-Hadamard family exists, so results are more delicate.

Non-trivial mosaics: v odd

- The skew-Hadamard family exists, so results are more delicate.
- An infinite-looking family exists:

$$
\begin{gathered}
\left(n^{2}+n+1, n+1,1\right) \oplus(4 t-1,2 t-1, t-1) \oplus(v, k, \lambda) \\
" \oplus\left(n^{2}+n+1, \frac{n^{2}+n}{2}, \frac{n^{2}+n-2}{4}\right) \oplus\left(n^{2}+n+1, \frac{n^{2}-n}{2}, \frac{n^{2}-3 n+2}{4}\right)
\end{gathered}
$$

Non-trivial mosaics: v odd

- The skew-Hadamard family exists, so results are more delicate.
- An infinite-looking family exists:

$$
\begin{gathered}
\left(n^{2}+n+1, n+1,1\right) \oplus(4 t-1,2 t-1, t-1) \oplus(v, k, \lambda) \\
" \oplus\left(n^{2}+n+1, \frac{n^{2}+n}{2}, \frac{n^{2}+n-2}{4}\right) \oplus\left(n^{2}+n+1, \frac{n^{2}-n}{2}, \frac{n^{2}-3 n+2}{4}\right)
\end{gathered}
$$

- Some other parameters up to 1,000 . Smallest example we can't rule out is $n=5$ above.

Non-trivial mosaics: v odd

- The skew-Hadamard family exists, so results are more delicate.
- An infinite-looking family exists:

$$
\begin{gathered}
\left(n^{2}+n+1, n+1,1\right) \oplus(4 t-1,2 t-1, t-1) \oplus(v, k, \lambda) \\
" \oplus\left(n^{2}+n+1, \frac{n^{2}+n}{2}, \frac{n^{2}+n-2}{4}\right) \oplus\left(n^{2}+n+1, \frac{n^{2}-n}{2}, \frac{n^{2}-3 n+2}{4}\right)
\end{gathered}
$$

- Some other parameters up to 1,000. Smallest example we can't rule out is $n=5$ above.
- Question: Can the complement of a projective plane of order 5 be partitioned into a $(31,15,7)$ and a (31, 10, 3)-design? (Both are known to exist individually.)

Bruck-Ryser-Chowla with v odd: traditional form

Theorem

Suppose that M is the incidence matrix of a symmetric (v, k, λ) design where v is odd. Then the Diophantine equation

$$
X^{2}-(k-\lambda) Y^{2}-(-1)^{\frac{v-1}{2}} \lambda Z^{2}=0
$$

has a non-trivial solution.

Bruck-Ryser-Chowla with v odd: traditional form

Theorem

Suppose that M is the incidence matrix of a symmetric (v, k, λ) design where v is odd. Then the Diophantine equation

$$
X^{2}-(k-\lambda) Y^{2}-(-1)^{\frac{v-1}{2}} \lambda Z^{2}=0
$$

has a non-trivial solution.

- Question: How do I solve such equations?

Bruck-Ryser-Chowla with v odd: traditional form

Theorem

Suppose that M is the incidence matrix of a symmetric (v, k, λ) design where v is odd. Then the Diophantine equation

$$
X^{2}-(k-\lambda) Y^{2}-(-1)^{\frac{v-1}{2}} \lambda Z^{2}=0
$$

has a non-trivial solution.

- Question: How do I solve such equations?
- Marshall Hall: the computations involved are detailed and troublesome.

Bruck-Ryser-Chowla with v odd: traditional form

Theorem

Suppose that M is the incidence matrix of a symmetric (v, k, λ) design where v is odd. Then the Diophantine equation

$$
X^{2}-(k-\lambda) Y^{2}-(-1)^{\frac{v-1}{2}} \lambda Z^{2}=0
$$

has a non-trivial solution.

- Question: How do I solve such equations?
- Marshall Hall: the computations involved are detailed and troublesome.
- Question: What does this have to do with design theory?

Bruck-Ryser-Chowla with v odd: traditional form

Theorem

Suppose that M is the incidence matrix of a symmetric (v, k, λ) design where v is odd. Then the Diophantine equation

$$
X^{2}-(k-\lambda) Y^{2}-(-1)^{\frac{v-1}{2}} \lambda Z^{2}=0
$$

has a non-trivial solution.

- Question: How do I solve such equations?
- Marshall Hall: the computations involved are detailed and troublesome.
- Question: What does this have to do with design theory?
- Question: Given a symmetric positive definite matrix G, when does there exist a rational matrix M such that $M M^{\top}=G$?

Quadratic forms

Definition

A quadratic form is a (multivariate) polynomial in which every term has degree 2.

$$
5 x^{2}+14 x y+10 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right)\binom{x}{y}
$$

Quadratic forms

Definition

A quadratic form is a (multivariate) polynomial in which every term has degree 2.

$$
5 x^{2}+14 x y+10 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right)\binom{x}{y}
$$

- Linear substitution of variables yields an equivalence operation on forms: $x_{0}=x+\frac{9}{5} y$ and $y_{0}=2 x+\frac{13}{5} y$ gives

$$
x_{0}^{2}+y_{0}^{2}=5 x^{2}+14 x y+10 y^{2}
$$

Quadratic forms

Definition

A quadratic form is a (multivariate) polynomial in which every term has degree 2.

$$
5 x^{2}+14 x y+10 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right)\binom{x}{y}
$$

- Linear substitution of variables yields an equivalence operation on forms: $x_{0}=x+\frac{9}{5} y$ and $y_{0}=2 x+\frac{13}{5} y$ gives

$$
x_{0}^{2}+y_{0}^{2}=5 x^{2}+14 x y+10 y^{2}
$$

- Yields a rational matrix factorisation:

$$
M M^{\top}=\left(\begin{array}{cc}
1 & 2 \\
9 & \frac{13}{5}
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{9}{5} \\
2 & \frac{13}{5}
\end{array}\right)=\left(\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right)
$$

$$
x^{2}+4 x y+6 x z+4 y^{2}+10 y z-z^{2} \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right]
$$

$$
\begin{gathered}
x^{2}+4 x y+6 x z+4 y^{2}+10 y z-z^{2} \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right] . \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & -10
\end{array}\right] .}
\end{gathered}
$$

$$
\begin{gathered}
x^{2}+4 x y+6 x z+4 y^{2}+10 y z-z^{2} \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right] . \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & -10
\end{array}\right] .} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 10 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & -10
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 10 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -10 & -10 \\
0 & -10 & 0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
x^{2}+4 x y+6 x z+4 y^{2}+10 y z-z^{2} \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right] . \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & -10
\end{array}\right] .} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 10 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & -10
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 10 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -10 & -10 \\
0 & -10 & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -10 & -10 \\
0 & -10 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -10
\end{array}\right]}
\end{gathered}
$$

Polarisation is no harder than Gaussian elimination. Every quadratic form can be polarised. $S \sim x_{0}^{2}-10 y_{0}^{2}-10 z_{0}^{2} \sim\langle 1,-10,-10\rangle$

Quadratic forms

Definition

Quadratic forms are congruent if there exists an invertible linear substitution of variables from one form to the other. If matrices S and T represent the forms, then there exists invertible M such that

$$
M^{\top} S M=T .
$$

Quadratic forms

Definition

Quadratic forms are congruent if there exists an invertible linear substitution of variables from one form to the other. If matrices S and T represent the forms, then there exists invertible M such that

$$
M^{\top} S M=T .
$$

- Every form can be polarised (over any characteristic 0 field).

Quadratic forms

Definition

Quadratic forms are congruent if there exists an invertible linear substitution of variables from one form to the other. If matrices S and T represent the forms, then there exists invertible M such that

$$
M^{\top} S M=T .
$$

- Every form can be polarised (over any characteristic 0 field).
- Sylvester: All invertible (Hermitian) $n \times n$ matrices over \mathbb{C} are congruent.
- Sylvester: (Symmetric) Matrices over \mathbb{R} are congruent if and only they have the same number of positive and negative eigenvalues.

Quadratic forms

Definition

Quadratic forms are congruent if there exists an invertible linear substitution of variables from one form to the other. If matrices S and T represent the forms, then there exists invertible M such that

$$
M^{\top} S M=T .
$$

- Every form can be polarised (over any characteristic 0 field).
- Sylvester: All invertible (Hermitian) $n \times n$ matrices over \mathbb{C} are congruent.
- Sylvester: (Symmetric) Matrices over \mathbb{R} are congruent if and only they have the same number of positive and negative eigenvalues.
- Over \mathbb{Q} the question is harder (because $\mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ is infinite).

Definition
 A symmetric matrix S represents the form $\langle 1,1, \ldots, 1\rangle$ if and only if $S=M^{\top} M$ for some invertible matrix M. Then S is a Gram matrix.

Definition

A symmetric matrix S represents the form $\langle 1,1, \ldots, 1\rangle$ if and only if $S=M^{\top} M$ for some invertible matrix M. Then S is a Gram matrix.

- If we show $n l+J$ is not a Gram matrix, certain projective planes will not exist.
- If S is a Gram matrix, $\operatorname{det}(S)$ is a square. Discriminant $=\mathbf{1}$

Definition

A symmetric matrix S represents the form $\langle 1,1, \ldots, 1\rangle$ if and only if $S=M^{\top} M$ for some invertible matrix M. Then S is a Gram matrix.

- If we show $n l+J$ is not a Gram matrix, certain projective planes will not exist.
- If S is a Gram matrix, $\operatorname{det}(S)$ is a square. Discriminant $=\mathbf{1}$
- If S is a Gram matrix its eigenvalues are positive. Positive Definite

Definition

A symmetric matrix S represents the form $\langle 1,1, \ldots, 1\rangle$ if and only if $S=M^{\top} M$ for some invertible matrix M. Then S is a Gram matrix.

- If we show $n l+J$ is not a Gram matrix, certain projective planes will not exist.
- If S is a Gram matrix, $\operatorname{det}(S)$ is a square. Discriminant $=1$
- If S is a Gram matrix its eigenvalues are positive. Positive Definite
- These conditions are not sufficient.

The matrix

$$
S=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is a Gram matrix if and only if S is positive definite, of discriminant 1 and a_{0} is a sum of two squares.

The matrix

$$
S=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is a Gram matrix if and only if S is positive definite, of discriminant 1 and a_{0} is a sum of two squares.

- Polarise S, since it has discriminant 1, get $\left\langle a_{0}, n^{2} a_{0}\right\rangle$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & n^{2} a
\end{array}\right)
$$

so without loss of generality such a form is equivalent to $\langle a, a\rangle$.

The matrix

$$
S=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is a Gram matrix if and only if S is positive definite, of discriminant 1 and a_{0} is a sum of two squares.

- Polarise S, since it has discriminant 1 , get $\left\langle a_{0}, n^{2} a_{0}\right\rangle$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & n^{2} a
\end{array}\right)
$$

so without loss of generality such a form is equivalent to $\langle a, a\rangle$.

- If $a=x^{2}+y^{2}$ then

$$
\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

So $\langle a, a\rangle=\langle 1,1\rangle$ if and only if a is a sum of two squares.

The matrix

$$
S=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is a Gram matrix if and only if S is positive definite, of discriminant 1 and a_{0} is a sum of two squares.

- Polarise S, since it has discriminant 1 , get $\left\langle a_{0}, n^{2} a_{0}\right\rangle$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & n^{2} a
\end{array}\right)
$$

so without loss of generality such a form is equivalent to $\langle a, a\rangle$.

- If $a=x^{2}+y^{2}$ then

$$
\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

So $\langle a, a\rangle=\langle 1,1\rangle$ if and only if a is a sum of two squares.

- Fermat: An integer a is a sum of two squares if and only if no prime $p \equiv 3 \bmod 4$ divides the square free part of a.

Definition

For prime p and integer a, a Legendre symbol is defined to be $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$. It is 1 if a is a quadratic residue and -1 otherwise.

Definition

For prime p and integers a, b, a Hilbert symbol is defined to be $(a, b)_{p}=1$ if $a X^{2}+b Y^{2}=Z^{2}$ has a solution (in the p-adics). It is -1 otherwise.

- This is not the definition we need for this talk. It is equivalent to the following rules (for odd p).

Definition

For prime p and integer a, a Legendre symbol is defined to be $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$. It is 1 if a is a quadratic residue and -1 otherwise.

Definition

For prime p and integers a, b, a Hilbert symbol is defined to be $(a, b)_{p}=1$ if $a X^{2}+b Y^{2}=Z^{2}$ has a solution (in the p-adics). It is -1 otherwise.

- This is not the definition we need for this talk. It is equivalent to the following rules (for odd p).
- $(a, b)_{p}=1$ if $a b$ is coprime to p.
- $(a, p)_{p}=\left(\frac{a}{p}\right)$.

Definition

For prime p and integer a, a Legendre symbol is defined to be $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$ $\bmod p$. It is 1 if a is a quadratic residue and -1 otherwise.

Definition

For prime p and integers a, b, a Hilbert symbol is defined to be $(a, b)_{p}=1$ if $a X^{2}+b Y^{2}=Z^{2}$ has a solution (in the p-adics). It is -1 otherwise.

- This is not the definition we need for this talk. It is equivalent to the following rules (for odd p).
- $(a, b)_{p}=1$ if $a b$ is coprime to p.
- $(a, p)_{p}=\left(\frac{a}{p}\right)$.
- $(p, p)_{p}=\left(\frac{-1}{p}\right)$ this is 1 if $p \equiv 1 \bmod 4$ and -1 if $p \equiv 3 \bmod 4$.

Definition

For prime p and integer a, a Legendre symbol is defined to be $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$ $\bmod p$. It is 1 if a is a quadratic residue and -1 otherwise.

Definition

For prime p and integers a, b, a Hilbert symbol is defined to be $(a, b)_{p}=1$ if $a X^{2}+b Y^{2}=Z^{2}$ has a solution (in the p-adics). It is -1 otherwise.

- This is not the definition we need for this talk. It is equivalent to the following rules (for odd p).
- $(a, b)_{p}=1$ if $a b$ is coprime to p.
- $(a, p)_{p}=\left(\frac{a}{p}\right)$.
- $(p, p)_{p}=\left(\frac{-1}{p}\right)$ this is 1 if $p \equiv 1 \bmod 4$ and -1 if $p \equiv 3 \bmod 4$.
- $(a b, c)_{p}=(a, c)_{p}(b, c)_{p}$ - the Hilbert symbol is bilinear.

Theorem

Suppose that Q is a quadratic form in two variables, which polarises to $\langle a, a\rangle$. Then Q is congruent to $x^{2}+y^{2}$ if and only if $(a, a)_{p}=1$ for every prime p.

Proof.

Suppose p divides the square-free part of a. Then

$$
(a, a)_{p}=(-1, a)_{p}=\left(\frac{-1}{p}\right)
$$

which is -1 if and only if $p \equiv 3 \bmod 4$ by Gauss. So $\langle a, a\rangle=\langle 1,1\rangle$ if and only if no prime $3 \bmod 4$ divides the square-free part of a. This is if-and-only-if a is a sum of two squares by Fermat.

Theorem (Two dimensional Hasse-Minkowski)
A symmetric matrix G is a Gram matrix if and only if

- It is positive definite.
- It has discriminant 1.
- For some (in fact, any) polarisation $G=\langle a, a\rangle$, all the Hilbert symbols ($a, a)_{p}$ are 1.

Theorem (Two dimensional Hasse-Minkowski)

A symmetric matrix G is a Gram matrix if and only if

- It is positive definite.
- It has discriminant 1.
- For some (in fact, any) polarisation $G=\langle a, a\rangle$, all the Hilbert symbols ($a, a)_{p}$ are 1 .
- This is all computationally easy, and very concrete.
- The Hilbert symbol is bilinear, which simplifies the construction of invariants in higher dimensions.
- Gnilke, Ó C., Olmez, Ponasso: Invariants of Quadratic Forms and applications in Design Theory, LAA, 2024.

Definition

Let Q be a quadratic form, equivalent to the polarisation
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. The Hasse-Minkowski invariant of Q at the prime p is

$$
H M(Q, p)=\prod_{i<j}\left(a_{i}, a_{j}\right)_{p}
$$

Theorem (Hasse-Minkowski, easy part)
A symmetric matrix G is a Gram matrix (if and) only if

- It is positive definite.
- It has discriminant 1.
- For some (in fact, any) polarisation $G=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, the invariants $H M(Q, p)$ are 1 for all (odd) primes p.

Hasse-Minkowski is neither detailed nor troublesome (mostly)

$$
\begin{aligned}
\langle 5,7,21,15\rangle & =(5,7)(5,21)(5,15)(7,21)(7,15)(21,15) \\
& =(5,7)(5,7)(5,3) \underline{(5,3)(5,5)(7,3)(7,7) \ldots} \\
& =\ldots \\
& =(3,3)(3,5)(3,7)(5,5)(5,7)
\end{aligned}
$$

Hasse-Minkowski is neither detailed nor troublesome (mostly)

$$
\begin{aligned}
\langle 5,7,21,15\rangle & =(5,7)(5,21)(5,15)(7,21)(7,15)(21,15) \\
& =(5,7)(5,7)(5,3) \underline{(5,3)(5,5)(7,3)(7,7) \ldots} \\
& =\ldots \\
& =(3,3)(3,5)(3,7)(5,5)(5,7)
\end{aligned}
$$

For $p=5$, this evaluates to

$$
(3,5)_{5}(5,5)_{5}=\left(\frac{3}{5}\right)\left(\frac{-1}{5}\right)=-1 \cdot 1
$$

So $\langle 5,7,21,15\rangle$ and $\langle 1,1,1,1\rangle$ are not congruent.

Hasse-Minkowski is neither detailed nor troublesome (mostly)

$$
\begin{aligned}
\langle 5,7,21,15\rangle & =(5,7)(5,21)(5,15)(7,21)(7,15)(21,15) \\
& =(5,7)(5,7)(5,3)(5,3)(5,5)(7,3)(7,7) \ldots \\
& =\ldots \\
& =(3,3)(3,5)(3,7)(5,5)(5,7)
\end{aligned}
$$

For $p=5$, this evaluates to

$$
(3,5)_{5}(5,5)_{5}=\left(\frac{3}{5}\right)\left(\frac{-1}{5}\right)=-1 \cdot 1
$$

So $\langle 5,7,21,15\rangle$ and $\langle 1,1,1,1\rangle$ are not congruent. Legendre: $\langle n, n, n, n\rangle \sim\langle 1,1,1,1\rangle$ for any integer n.

Bruck-Ryser

Polarising $(k-\lambda) I+\lambda J$ means constructing a set of orthogonal eigenvectors over \mathbb{Q} for J.

Bruck-Ryser

Polarising $(k-\lambda) I+\lambda J$ means constructing a set of orthogonal eigenvectors over \mathbb{Q} for J.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
1 & 1 & -2 & 0 & 0 \\
1 & 1 & 1 & 3 & 0 \\
1 & 1 & 1 & 1 & -4
\end{array}\right)\left(\begin{array}{ccccc}
5 & 1 & 1 & 1 & 1 \\
1 & 5 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 5 & 1 \\
1 & 1 & 1 & 1 & 5
\end{array}\right)\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 \\
1 & 0 & -2 & 1 & 1 \\
1 & 0 & 0 & 3 & 1 \\
1 & 0 & 0 & 0 & -4
\end{array}\right) \\
& \quad=\left(\begin{array}{ccccc}
25 & 0 & 0 & 0 & 0 \\
0 & 2 \cdot 4 & 0 & 0 & 0 \\
0 & 0 & 6 \cdot 4 & 0 & 0 \\
0 & 0 & 0 & 12 \cdot 4 & 0 \\
0 & 0 & 0 & 0 & 20 \cdot 4
\end{array}\right) \sim\left(\begin{array}{ccccc}
25 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

Bruck-Ryser

Polarising $(k-\lambda) I+\lambda J$ means constructing a set of orthogonal eigenvectors over \mathbb{Q} for J.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
1 & 1 & -2 & 0 & 0 \\
1 & 1 & 1 & 3 & 0 \\
1 & 1 & 1 & 1 & -4
\end{array}\right)\left(\begin{array}{ccccc}
5 & 1 & 1 & 1 & 1 \\
1 & 5 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 5 & 1 \\
1 & 1 & 1 & 1 & 5
\end{array}\right)\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 \\
1 & 0 & -2 & 1 & 1 \\
1 & 0 & 0 & 3 & 1 \\
1 & 0 & 0 & 0 & -4
\end{array}\right) \\
& \quad=\left(\begin{array}{ccccc}
25 & 0 & 0 & 0 & 0 \\
0 & 2 \cdot 4 & 0 & 0 & 0 \\
0 & 0 & 6 \cdot 4 & 0 & 0 \\
0 & 0 & 0 & 12.4 & 0 \\
0 & 0 & 0 & 0 & 20 \cdot 4
\end{array}\right) \sim\left(\begin{array}{ccccc}
25 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

- The pattern generalises, simplifies to $\left\langle k^{2}, n, n, \ldots\right\rangle$ where $n=k-\lambda$.
- Properties of Hilbert symbols simplify this to $(n, n)^{\left(\frac{v-1}{2}\right)}$.

Bruck-Ryser

Polarising $(k-\lambda) I+\lambda J$ means constructing a set of orthogonal eigenvectors over \mathbb{Q} for J.

$$
\left.\begin{array}{l}
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
1 & 1 & -2 & 0 & 0 \\
1 & 1 & 1 & 3 & 0 \\
1 & 1 & 1 & 1 & -4
\end{array}\right)\left(\begin{array}{ccccc}
5 & 1 & 1 & 1 & 1 \\
1 & 5 & 1 & 1 & 1 \\
1 & 1 & 5 & 1 & 1 \\
1 & 1 & 1 & 5 & 1 \\
1 & 1 & 1 & 1 & 5
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 \\
1 & 0 & -2 & 1 \\
1 \\
1 & 0 & 0 & 3
\end{array} 1\right. \\
1
\end{array} 00 \begin{array}{ccc}
0 & 0 & -4
\end{array}\right) .
$$

- The pattern generalises, simplifies to $\left\langle k^{2}, n, n, \ldots\right\rangle$ where $n=k-\lambda$.
- Properties of Hilbert symbols simplify this to $(n, n)\left({ }^{(v-1} 2^{2}\right)$.
- Non-trivial condition if $n \equiv 1,2 \bmod 4$, requires $n=x^{2}+y^{2}$.
- Fermat: There is no projective plane of order 6 or 14 or ...

Summary of quadratic forms

- The Hilbert symbols are computationally easy to compute (assuming that the matrix entries are factorised).
- Can decide effectively whether symmetric matrices are congruent.
- In contrast, Diophantine equations are typically hard to solve. BRC state their theorem in a way which avoids mention of congruence.

Summary of quadratic forms

- The Hilbert symbols are computationally easy to compute (assuming that the matrix entries are factorised).
- Can decide effectively whether symmetric matrices are congruent.
- In contrast, Diophantine equations are typically hard to solve. BRC state their theorem in a way which avoids mention of congruence.
- Hasse-Minkowski theory is non-constructive: typically to not find any congruence matrix (let alone (0,1)-congruence matrices).
- The hard (and non-constructive) part of the theorem shows that every global obstruction comes from a local obstruction.
- Deciding whether $(k-\lambda) I+\lambda J=M M^{\top}$ has a rational solution is, in practice, easy. The condition is that

$$
\left(k-\lambda,(-1)^{v-1 / 2} \lambda\right)_{p}=1
$$

for all primes p.

Back to the symmetric mosaic problem

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Question: For which parameters does there exist a mosaic of symmetric designs?

Proposition

Suppose that M_{1}, M_{2} and $M_{1}+M_{2}$ are incidence matrices of symmetric designs. Define $Q=M_{1} M_{2}^{\top}+I$. Then $Q Q^{\top}=\sigma I+\tau J$ where $\sigma=\left(k_{1}-\lambda_{1}\right)\left(k_{2}-\lambda_{2}\right)-\alpha+1$ and $\tau=v \lambda_{1} \lambda_{2}+\lambda_{2}\left(k_{1}-\lambda_{1}\right)+\lambda_{1}\left(k_{2}-\lambda_{2}\right)+\alpha$.

Theorem

If v is even then

$$
\left(k_{1}-\lambda_{1}\right)\left(k_{2}-\lambda_{2}\right)-\frac{2 k_{1} k_{2}}{v-1}+1
$$

is the square of an integer. If v is odd, then

$$
(\sigma, \sigma)_{p}^{\binom{v-1}{2}}(\sigma, v)_{p}=\left(\sigma,(-1)^{v-1 / 2} v\right)_{p}=1
$$

for all odd primes p.

- Our theorem rules out the only even mosaic on less than 10,000 points

$$
(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828) .
$$

because $13^{2} \times 23^{2}-11^{2}$ is not a square.

- Our theorem rules out the only even mosaic on less than 10,000 points

$$
(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828) .
$$

because $13^{2} \times 23^{2}-11^{2}$ is not a square.

- As in BRC, the result is weaker in the odd case, ruling out about half of possible parameter sets. It rules out decomposing the complement of a projective plane of order 9 :

$$
(91,45,22) \oplus(91,36,14) \oplus(91,10,1) .
$$

The Hilbert symbol reduces to $(471,471)_{p}(471,91)_{p}$. At $p=3$ this is $(3,3)_{p}(3,1)_{p}=-1$.

- Our theorem rules out the only even mosaic on less than 10,000 points

$$
(2380,183,14) \oplus(2380,793,264) \oplus(2380,1404,828) .
$$

because $13^{2} \times 23^{2}-11^{2}$ is not a square.

- As in BRC, the result is weaker in the odd case, ruling out about half of possible parameter sets. It rules out decomposing the complement of a projective plane of order 9 :

$$
(91,45,22) \oplus(91,36,14) \oplus(91,10,1) .
$$

The Hilbert symbol reduces to $(471,471)_{p}(471,91)_{p}$. At $p=3$ this is $(3,3)_{p}(3,1)_{p}=-1$.

- But the theorem does not rule out existence of a

$$
(31,15,7) \oplus(31,10,3) \oplus(31,6,1) .
$$

Go raibh maith agaibh!

