# Computing with the Monster Group 

 (a public service announcement)Tomasz Popiel

Monash University
joint work with Heiko Dietrich and Melissa Lee using software developed by Martin Seysen

ACC 2023

## "Motivation"

Typical theorem about "highly symmetric" combinatorial structures:
If $S$ is some structure with a group $G$ of automorphisms that acts with some symmetry property $P$, then $(S, G)$ belongs to some list of examples.

Typical proof strategy:

- $P$ restricts the structure of $G$;
- reduce to $T \leq G \leq \operatorname{Aut}(T)$ with $T$ a non-abelian simple group;
- the CFSG tells you the candidates for $T$;
- the list of maximal subgroups of $T$ tells you the candidates for (at least the overgroups of) the stabiliser of an 'element' of $S$.

Problem: the maximal subgroups of the non-abelian finite simple groups are not completely understood; a notorious case is the Monster.

## The Monster

The Monster, $\mathbb{M}$, is the largest of the 26 sporadic finite simple groups.
Existence predicted by Fischer and Griess (1973), as a simple group with certain involution centralisers ( $2 . \mathbb{B}$ and $2^{1+24} \cdot \mathrm{Co}_{1}$ ). It follows that

$$
|\mathbb{M}|=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8 \times 10^{53}
$$

It was also predicted that $\mathbb{M}$ has an irreducible complex representation of dimension 196883. This gave the character table (Fischer et al. 1979).

Griess (1982) finally constructed $\mathbb{M}$ as the automorphism group of a certain commutative, non-associative algebra on $\mathbb{R}^{196884}$.

Uniqueness was proved by Griess, Meierfrankenfeld and Segev (1989).
Later: other descriptions (Moonshine), presentations.

## The maximal subgroups of $\mathbb{M}$

Every maximal subgroup of $\mathbb{M}$ is the normaliser of a direct product $H$ of isomorphic simple groups. Two cases:

- H is an elementary abelian $p$-group (the " $p$-local" case), or
- $H$ is a direct product of isomorphic non-abelian simple groups.

An incomplete list appeared in the Atlas (1985), without proofs.
The $p$-local case was formally dealt with later:

- $p=2$ - Meierfrankenfeld and Shpectorov (2002-2003);
- $p=3$ - Wilson (1988);
- $p \geq 5$ - due to Norton but published by Wilson (1988).

Norton and Wilson (1998-2002) then began work on non-local maximals, reducing the unclassified simple subgroups of $\mathbb{M}$ to 19 partially open cases.

## Unsettled cases, per Norton-Wilson (2002)

Table 3. Class fusions not yet eliminated.

| Group | Class fusions |
| :--- | :--- |
| $L_{2}(7)$ | $2 B, 3 C, 4,7 B$ |
| $A_{6}$ | $2 B, 3 B, 3 B, 4,5 B$ |
| $L_{2}(8)$ | $2 B, 3 B, 7 B, 9$ |
| $L_{2}(11)$ | $2 B, 3 B / B / C, 5 B, 6 B / E / F, 11 A$ |
| $L_{2}(13)$ | $2 B, 3 B / B / C, 6 B / E / F, 7 B, 13 A$ |
| $L_{2}(17)$ | $2 B, 3 B, 4,8,9,17 A$ |
| $L_{2}(19)$ | $2 B, 3 B, 5 B, 9,19 A$ |
| $L_{2}(16)$ | $2 B, 3 B / C, 5 B, 15 C / D, 17 A$ |
| $L_{3}(3)$ | $2 B, 3 A / B / B, 3 C, 4,6 C / B / E, 8,13$ |
|  | $2 B, 3 B, 3 B, 4,6 B / E, 8,13 A$ |
| $U_{3}(3)$ | $2 B, 3 A / B / B, 3 B, 4,4 C, 6 C / B / E, 7 A, 8,12$ |
|  | $2 B, 3 A / B / B, 3 C, 4,4,6 C / B / E, 7 B, 8,12$ |
| $M_{11}$ | $2 B, 3 B, 4 D, 5 B, 6 B / E, 8 F, 11 A$ |
| $L_{2}(27)$ | $2 B, 3 B, 7 B, 13,14 C$ |
| $L_{2}(31)$ | $2 B, 3 B, 4 C, 5 B, 8 A / E, 15 C, 16 A / B, 31 A B$ |
| $L_{3}(4)$ | $2 B, 3 B, 4 C, 4 C, 4 C, 5 B, 7 A$ |
| $U_{4}(2)$ | $2 B, 2 B, 3 B, 3 B, 3 B, 4,4 D, 5 B, 6,6,6,6,9,12$ |
| $S z(8)$ | $2 B, 4,5 B, 7,13$ |
| $U_{3}(4)$ | $2 B, 3 C, 4,5 B, 5 B, 10 D / E, 13,15 D$ |
| $L_{2}(71)$ | $2 B, 3 B, 4 C, 5 B, 6 E, 7 B, 9 B, 12 I, 18 D, 35 B, 36 D, 71 A B$ |
| $U_{3}(8)$ | $2 B, 3 A / A / C, 3 B, 4,4,4,6 C / C / F, 7 A, 9 A / B / A, 19 A, 21 A / A / C$ |

[^0]
## Computation in $\mathbb{M}$, à la Holmes and Wilson

Many remaining cases required computation in $\mathbb{M}$, which was problematic:

- the smallest faithful matrix representation has dimension 196882;
- the smallest faithful permutation representation has degree $\approx 10^{20}$.

Holmes and Wilson (2003) constructed $\mathbb{M}$ computationally by restricting its 196882 -dimensional $\mathbb{F}_{3}$-module to an involution centraliser $2^{1+24}$. $\mathrm{Co}_{1}$ (and adjoining a certain extra element, with a different representation).

Ignoring the details (!), the main point is that $196882 \times 196882$ matrices can be built from smaller pieces. They found further maximal subgroups

$$
L_{2}(19): 2, L_{2}(29): 2, L_{2}(59), L_{2}(71)
$$

Norton and Wilson (2013) also found a new maximal subgroup $L_{2}(41)$; some additional cases were handled theoretically by Wilson (2016-17).

## Unsettled cases, circa 2017

At this point (based on some 15 papers!) it was known that any further maximal subgroup of $\mathbb{M}$ must be almost simple with socle

$$
L_{2}(8), L_{2}(13), L_{2}(16), \text { or } U_{3}(4)
$$

Wilson (2016-2017) reported that all cases apart from $L_{2}(13)$ had been eliminated, but proofs never appeared.

We decided to try our luck at settling these cases, beginning with $L_{2}(13)$.
Problem: Holmes and Wilson's computer construction was slow, and (more to the point) essentially impossible for anyone else to reproduce (not implemented in GAP/Magma, nor even publicly available).

## A new computer construction of $\mathbb{M}$ : mmgroup

Meanwhile, we had learned of a new computer construction of $\mathbb{M}$ due to Seysen ${ }^{1}$ (2020+), which is much faster than previous implementations:

An implementation [14] based on that idea multiplies two random elements of $\mathbb{M}$ in a bit less than 50 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz . This is about 100000 times faster than estimated by Wilson [15] in 2013.

Elements of $\mathbb{M}$ are represented as words in generators for a certain 'large' subgroup of a $2 B$-involution centraliser $G_{\times 0} \cong 2^{1+24}$. $\mathrm{Co}_{1}$, plus a certain extra element. (Similar idea/different implementation to Holmes-Wilson.)

The details are complicated (conceptually, and in terms of code), but Seysen's main new idea is an efficient word-shortening algorithm:

So we may reconstruct an element $g$ of $\mathbb{M}$ as a word in the generators of $\mathbb{M}$ from the images of three fixed vectors in the representation $\rho$ under the action of $g$. It suffices if these three fixed vectors $\left(v_{1}, v^{+}, v^{-}\right)$are known modulo 15 . This leads to an extremely fast word shortening algorithm.

[^1]
## Capabilities of mmgroup

Some things that you can do in mmgroup (besides the group operation):

- Calculate the order of an arbitrary element of $\mathbb{M}$.
- Conjugate any involution into the centraliser $G_{x 0} \cong 2^{1+24} . C_{0}$ of a distinguished $2 B$-involution - computation in $G_{x 0}$ is especially fast.
- Calculate certain character values of an arbitrary element of $G_{x 0}$.
- Select random elements from $\mathbb{M}, G_{x 0}$, and certain subgroups of $G_{x 0}$.

Some things that you can't do in any easy way (but that we need to do):

- Construct centralisers/conjugate elements within an arbitrary class.
- Construct the normaliser of e.g. a cyclic subgroup.
- Determine character values of elements outside of $G_{x 0}$.
- Construct a subgroup from a set of generators.
- Select random elements from such a subgroup.


## Our results

## Theorem (Dietrich, Lee, Popiel; 2023+)

The Monster has

- a unique class of maximal subgroups that are almost simple with socle $L_{2}(13)$ - these are isomorphic to $\operatorname{Aut}\left(L_{2}(13)\right)=L_{2}(13): 2$;
- a unique class of maximal subgroups that are almost simple with socle $U_{3}(4)$ - these are isomorphic to $\operatorname{Aut}\left(U_{3}(4)\right)=U_{3}(4): 4$;
- no maximal subgroups that are almost simple with socle $L_{2}(8)$ or $L_{2}(16)$.


## Corollary

The classification of the maximal subgroups of $\mathbb{M}$ is complete.

## Proof strategy $-L_{2}(13)$ case

$G=L_{2}(13)$ is generated by subgroups 13:6 and $D_{12}$ intersecting in the 6 .
Wilson (2015) implies that all elements of order 13 in $G$ must lie in $\mathbb{M}$-class " $13 A$ ", so first find some $g_{13} \in 13 A$. (This is already hard.)

Construct $N_{\mathbb{M}}\left(\left\langle g_{13}\right\rangle\right) \cong\left((13: 6) \times L_{3}(3)\right) .2$, and thereby construct all $\mathbb{M}$-classes of subgroups $13: 6$ containing $g_{13}$. There are five of them.

For each 13:6, find all involutions $i_{2}$ that invert an element $g_{6}$ of order 6 , so that $\left\langle g_{6}, i_{2}\right\rangle \cong D_{12}$. This is done via random search in $N_{\mathbb{M}}\left(\left\langle g_{6}\right\rangle\right)$, which is constructed by projecting its overgroup $C_{\mathbb{M}}\left(g_{6}^{3}\right) \cong 2^{1+24} . \mathrm{Co}_{1}$ to $\mathrm{Co}_{1}<\mathrm{GL}_{24}(2)$ in Magma using some 'hidden' functionality in mmgroup.

Check each involution to see whether it extends $13: 6$ to $G=L_{2}$ (13). If so, check whether $G$ has trivial centraliser (if not, then $G$ is not maximal).

One class of $L_{2}(13)$ with trivial centraliser arises - find an extra generator that extends it to a maximal subgroup $L_{2}(13): 2$ of $\mathbb{M}$.

## Generators for a maximal $L_{2}(13): 2<\mathbb{M}$

```
g13 = MM("Mky_519h*x_0cb8h*d_3abh*p_178084032*l_2*p_2344320*l_2*p_471482*1_1*t_1* l_
    2*p_2830080*1_2*p_22371347*1_2*t_2*1_1*p_1499520*l_2*p_22779365*1_2*t_1*1_2* p_
    2597760*l_1*p_111799396*t_1*l_1*p_1499520*l_2*p_85838017*t_2*l_1*p_1499520*1_1*p_
    64024721*t_2*1_2*p_2386560*1_2*p_21335269>")
g6 = MM("Mky_764h*x_590h*d_0bf6h * p_63465756*l_1*p_24000*1_ 2*p_528432*t_1*l_2* p_
    1457280*1_1*p_23214136*1_1*t_2*1_2*p_2344320*1_2*p_13038217*1_2*t_1*l_2*p_
    2956800*1_1*p_85332887*t_2*1_2*p_2830080*1_2*p_85335745*t_2*1_2*p_1900800*1_2* p_
    13472*t_2*1_2*p_2386560*1_2*p_85413728*t_1*1_ 2*p_2386560*1_2*p_53803593 > ")
i2 = MM("Mky_6ch*x_7ch*d_52ah*p_115885662*l_2*p_2787840*l_2*p_12552610*1_2*t_1*1_2*p
    _1900800*1_2*p_31998118*1_2*t_2*1_2*p_80762880*1_1*p_243091248*1_2*t_1*1_2*p_
    2597760*1_1*p_42794439*t_1*1_1*p_1394880*l_2*p_64015152*t_1*1_1*p_2027520*1_1*p_
    177984*t_1*1_2*p_79432320*1_1*p_161927136>")
a12 = MM( "Mky_1afh*x_1661h*d_2ddh*p_208095583*l_2*p_1943040*l_2*p_1974295*l_2*t_2* l_
    2* p_1900800*1_2* p_10778*1_2*t_ 2* 1_ 2* p_1900800*1_2* p_1868387*1_1*t_1*1_2* p
    2956800*l_1*p_11159238*t_1*l_2*p_1985280*l_1*p_86275805*t_2*l_2*p_2386560*l_2*p_
    42712609*t_2*1_1*p_1499520*1_1*p_106699812 > '')
```

Listing 6. Generators $g_{13}, g_{6}, i_{2}$, and $a_{12}$ for a maximal subgroup of $\mathbf{M}$ isomorphic to $\mathrm{PSL}_{2}(13): 2$ in mmgroup format; see also Proposition 3.5 and [12]. Note that $g_{13}$ is the same element as in Listing 5 , and that $g_{6}=y_{6} x_{6}$ with $y_{6}$ and $x_{6}$ as in Listing 5.

## Thank you!

| $2 \cdot \mathrm{~B}$ | $(7: 3 \times \mathrm{He}): 2$ | $\left(\mathrm{PSL}_{2}(11) \times \mathrm{PSL}_{2}(11)\right): 4$ |
| :--- | :--- | :--- |
| $2^{1+24} \cdot \mathrm{Co}_{1}$ | $\left(\mathrm{~A}_{5} \times \mathrm{A}_{12}\right): 2$ | $13^{2}: 2 \mathrm{PSL}_{2}(13) \cdot 4$ |
| $3 \cdot \mathrm{Fi}_{24}$ | $5^{3+3 \cdot} \cdot\left(2 \times \mathrm{PSL}_{3}(5)\right)$ | $\left(7^{2}:\left(3 \times 2 \mathrm{~A}_{4}\right) \times \mathrm{PSL}_{2}(7)\right) \cdot 2$ |
| $2^{2 \cdot 2} \mathrm{E}_{6}(2): \mathrm{S}_{3}$ | $\left(\mathrm{~A}_{6} \times \mathrm{A}_{6} \times \mathrm{A}_{6}\right) \cdot\left(2 \times \mathrm{S}_{4}\right)$ | $\left(13: 6 \times \mathrm{PSL}_{3}(3)\right) \cdot 2$ |
| $2^{10+16} \cdot \mathrm{P}_{10}^{+}(2)$ | $\left(\mathrm{A}_{5} \times \mathrm{PSU}_{3}(8): 3\right): 2$ | $13^{1+2}:\left(3 \times 4 \mathrm{~S}_{4}\right)$ |
| $2^{2+11+22 \cdot} \cdot\left(\mathrm{M}_{24} \times \mathrm{S}_{3}\right)$ | $5^{2+2+4}:\left(\mathrm{S}_{3} \times \mathrm{GL}_{2}(5)\right)$ | $\mathrm{PSU}_{3}(4): 4$ |
| $3^{1+12 \cdot 2 \cdot \mathrm{Suz}_{2}}$ | $\left(\mathrm{PSL}_{3}(2) \times \mathrm{PSp}_{4}(4): 2\right) \cdot 2$ | $\mathrm{PSL}_{2}(71)$ |
| $2^{5+10+20} \cdot\left(\mathrm{~S}_{3} \times \mathrm{PSL}_{5}(2)\right)$ | $7^{1+4}:\left(3 \times 2 \mathrm{~S}_{7}\right)$ | $\mathrm{PSL}_{2}(59)$ |
| $\mathrm{S}_{3} \times \mathrm{Th}$ | $\left(5^{2}:\left[2^{4}\right] \times \mathrm{PSU}_{3}(5)\right) \cdot \mathrm{S}_{3}$ | $11^{2}:\left(5 \times 2 \mathrm{~A}_{5}\right)$ |
| $2^{3+6+12+18 \cdot} \cdot\left(\mathrm{PSL}_{3}(2) \times 3 \mathrm{~S}_{6}\right)$ | $\left(\mathrm{PSL}_{2}(11) \times \mathrm{M}_{12}\right): 2$ | $\mathrm{PSL}_{2}(41)$ |
| $3^{8} \cdot \mathrm{P}_{8}^{-}(3) \cdot 2$ | $\left(\mathrm{~A}_{7} \times\left(\mathrm{A}_{5} \times \mathrm{A}_{5}\right): 2^{2}\right): 2$ | $\mathrm{PSL}_{2}(29): 2$ |
| $\left(\mathrm{D}_{10} \times \mathrm{HN}\right) \cdot 2$ | $5^{4}:\left(3 \times 2 \cdot \mathrm{PSL}_{2}(25)\right): 2$ | $7^{2}: \mathrm{SL}_{2}(7)$ |
| $\left(3^{2}: 2 \times \mathrm{P}_{8}^{+}(3)\right) \cdot \mathrm{S}_{4}$ | $7^{2+1+2}: \mathrm{GL}_{2}(7)$ | $\mathrm{PSL}_{2}(19): 2$ |
| $3^{2+5+10} \cdot\left(\mathrm{M}_{11} \times 2 \mathrm{~S}_{4}\right)$ | $\mathrm{M}_{11} \times \mathrm{A}_{6} \cdot 2^{2}$ | $\mathrm{PSL}_{2}(13): 2$ |
| $3^{3+2+6+6}:\left(\mathrm{PSL}_{3}(3) \times \mathrm{SD}_{16}\right)$ | $\left(\mathrm{S}_{5} \times \mathrm{S}_{5} \times \mathrm{S}_{5}\right): \mathrm{S}_{3}$ | $41: 40$ |
| $5^{1+6}: 2 \cdot \mathrm{~J}_{2}: 4$ |  |  |


[^0]:    Note. Alternatives where given should be read in parallel. For example, an $L_{2}(11)$ is of type $(3 B, 6 B)$ or $(3 B, 6 E)$ or $(3 C, 6 F)$.

[^1]:    $1_{\text {https: }}$ //github.com/Martin-Seysen/mmgroup (written in Python; freely available)

