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Typical theorem about “highly symmetric” combinatorial structures:

If S is some structure with a group G of automorphisms that acts with
some symmetry property P, then (S, G) belongs to some list of examples.

Typical proof strategy:
@ P restricts the structure of G;
@ reduce to T < G < Aut(T) with T a non-abelian simple group;
@ the CFSG tells you the candidates for T;

o the list of maximal subgroups of T tells you the candidates for (at
least the overgroups of) the stabiliser of an ‘element’ of S.

Problem: the maximal subgroups of the non-abelian finite simple groups
are not completely understood; a notorious case is the Monster.
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The Monster, M, is the largest of the 26 sporadic finite simple groups.

Existence predicted by Fischer and Griess (1973), as a simple group with
certain involution centralisers (2.B and 21+24.Coy). It follows that

M| = 232059 76.112.133.17.10.23.29.31.41.47.59.71 ~ 8 x 10°.

It was also predicted that M has an irreducible complex representation of
dimension 196883. This gave the character table (Fischer et al. 1979).

Griess (1982) finally constructed M as the automorphism group of a
certain commutative, non-associative algebra on R196884

Uniqueness was proved by Griess, Meierfrankenfeld and Segev (1989).

Later: other descriptions (Moonshine), presentations.
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The maximal subgroups of M

Every maximal subgroup of M is the normaliser of a direct product H of
isomorphic simple groups. Two cases:

e H is an elementary abelian p-group (the “p-local” case), or

@ H is a direct product of isomorphic non-abelian simple groups.

An incomplete list appeared in the Atlas (1985), without proofs.

The p-local case was formally dealt with later:
@ p = 2 — Meierfrankenfeld and Shpectorov (2002-2003);
e p =3 — Wilson (1988);
@ p > 5 — due to Norton but published by Wilson (1988).

Norton and Wilson (1998-2002) then began work on non-local maximals,
reducing the unclassified simple subgroups of Ml to 19 partially open cases.
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Unsettled cases, per Norton—Wilson (2002)

TABLE 3. Class fusions not yet eliminated.

Group Class fusions

Ly(7) 2B,3C,4,7B
Ag 2B, 3B, 38, 4,58
L,(8) 2B,3B,7B,9

) 2B,3B/B/C,5B,6B/E/F, 114

) 2B,3B/B/C,6B/E/F,B, 134
Ly(17) 2B,3B,4,8,9,174

) 2B, 3B,5B,9, 194

) 2B,3B/C,5B,15C/D, 174
Ly(3) 2B,34/B/B,3C,4,6C/B/E,8,13

2B,3B, 3B, 4,6B/E, 8, 134
Us(3) 2B,3A/B/B,3B,4,4C,6C/B/E, A8, 12
2B,34/B/B,3C,4,4,6C/B/E,1B,8,12

My 2B,3B,4D,5B, 6B/E, 8F, 11A
L,(27) 2B,3B,7B, 13, 14C
Ly(31) 2B,3B,4C, 5B, 8A/E, 15C, 16A/ B, 31AB
Ly(4) 2B, 3B,4C, 4C, 4C, 5B, TA
U,(2) 2B,2B,3B,3B,3B,4,4D, 5B,6,6,6,6,9, 12
Sz(8) 2B,4,58B,7,13
Uy(4)  2B,3C,4,5B,5B, 10D/E, 13, 15D
L,(71) 2B, 3B, 4C, 5B, 6E, 7B, 9B, 121, 18D, 35B, 36D, TIAB
Us(8) 2B,3A/A/C,3B,4,4,4,6C/C/F,TA,9A/B/A, 194,214 /A/C

Note. Alternatives where given should be read in parallel. For example, an L,(11) is
of type (3B, 6B) or (3B, 6E) or (3C, 6F).
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Computation in M, a la Holmes and Wilson

Many remaining cases required computation in M, which was problematic:
@ the smallest faithful matrix representation has dimension 196882;

@ the smallest faithful permutation representation has degree ~ 10%°.

Holmes and Wilson (2003) constructed M computationally by restricting
its 196882-dimensional F3-module to an involution centraliser 21+24.Co;
(and adjoining a certain extra element, with a different representation).

Ignoring the details (!), the main point is that 196882 x 196882 matrices
can be built from smaller pieces. They found further maximal subgroups

15(19):2, L(29):2, L5(59), La(71).

Norton and Wilson (2013) also found a new maximal subgroup L»(41);
some additional cases were handled theoretically by Wilson (2016-17).
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Unsettled cases, circa 2017

At this point (based on some 15 papers!) it was known that any further
maximal subgroup of Ml must be almost simple with socle

L2(8), L2(13), L2(16), or U3(4-).

Wilson (2016-2017) reported that all cases apart from L>(13) had been
eliminated, but proofs never appeared.

We decided to try our luck at settling these cases, beginning with L5(13).

Problem: Holmes and Wilson's computer construction was slow, and
(more to the point) essentially impossible for anyone else to reproduce
(not implemented in GAP/Magma, nor even publicly available).
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A new computer construction of M: mmgroup

Meanwhile, we had learned of a new computer construction of M due to
Seysen! (2020+), which is much faster than previous implementations:
An implementation [14] based on that idea multiplies two random elements of M in

a bit less than 50 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz.
This is about 100000 times faster than estimated by Wilson [15] in 2013.

Elements of M are represented as words in generators for a certain ‘large’
subgroup of a 2B-involution centraliser Gy = 21724.Coy, plus a certain
extra element. (Similar idea/different implementation to Holmes—Wilson.)

The details are complicated (conceptually, and in terms of code), but
Seysen’s main new idea is an efficient word-shortening algorithm:

So we may reconstruct an element g of M as a word in the generators of M from the
images of three fixed vectors in the representation p under the action of g. It suffices if these
three fixed vectors (v1,v",v™) are known modulo 15. This leads to an extremely fast word
shortening algorithm.

1 . . . . .
https://github.com/Martin-Seysen/mmgroup (written in Python; freely available)
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Capabilities of mmgroup

Some things that you can do in mmgroup (besides the group operation):
o Calculate the order of an arbitrary element of M.

e Conjugate any involution into the centraliser G,o = 2'+24.Co; of a
distinguished 2B-involution — computation in Gyg is especially fast.

o Calculate certain character values of an arbitrary element of Gyg.

@ Select random elements from M, Gy, and certain subgroups of Gyg.

Some things that you can't do in any easy way (but that we need to do):
e Construct centralisers/conjugate elements within an arbitrary class.
@ Construct the normaliser of e.g. a cyclic subgroup.
@ Determine character values of elements outside of Gyg.

o Construct a subgroup from a set of generators.

°

Select random elements from such a subgroup.
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Our results

Theorem (Dietrich, Lee, Popiel; 2023+ )
The Monster has

@ a unique class of maximal subgroups that are almost simple with socle
L»(13) — these are isomorphic to Aut(L2(13)) = L2(13):2;

@ a unique class of maximal subgroups that are almost simple with socle
Usz(4) — these are isomorphic to Aut(Usz(4)) = Us(4):4;

@ no maximal subgroups that are almost simple with socle L»(8) or
L>(16).

The classification of the maximal subgroups of M is complete.
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Proof strategy — L,(13) case

G = L»(13) is generated by subgroups 13:6 and Ds; intersecting in the 6.

Wilson (2015) implies that all elements of order 13 in G must lie in
Me-class “13A", so first find some g13 € 13A. (This is already hard.)

Construct Myr({g13)) = ((13:6) x L3(3)).2, and thereby construct all
M-classes of subgroups 13:6 containing gi3. There are five of them.

For each 13:6, find all involutions i> that invert an element gg of order 6,
so that (g, i) = Di2. This is done via random search in My((ge)), which
is constructed by projecting its overgroup CM(gg) = 21424 Co, to

Co1 < GL24(2) in Magma using some ‘hidden’ functionality in mmgroup.

Check each involution to see whether it extends 13:6 to G = L»(13). If so,
check whether G has trivial centraliser (if not, then G is not maximal).

One class of L»(13) with trivial centraliser arises — find an extra generator
that extends it to a maximal subgroup L2(13):2 of M.
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Generators for a maximal L,(13):2 < M

g13 = MM("Ms<y_519h«x_0cb8h+d_3abhs«p_178084032«1_2+p_2344320+1_2+p_471482«1_1«t_1+1_
2+p_2830080+1_2+p_22371347+1_2«t_2+«1_1+p_1499520+1_2+p_22779365+1_2+t_1x1_2+p_
2597760+ 1_1+p_11179396xt_1x1_1+p_1499520«1_2+p_85838017+t_2+«1_1+«p_1499520+1_1sp_
64024721+ t_2+1_2+p_2386560+1_2+p_21335269>")

g6 = MM("M<y_764h«x_590h«d_0bf6h«p_63465756+1_1+p_24000+1_2+p_528432«t_1x1_24p_
1457280+ 1_1¢p_23214136x1_1«t_2+1_2+¢p_2344320«1_2+p_13038217«1_2+t_1+1_24p_
2956800+ 1_1+p_85332887«t_2+1_2+p_2830080+1_2+«p_85335745+t_2+«1_2+p_1900800+1_2+p_
13472+ t_2¢1_2+p_2386560+1_2+p_85413728+t_1+1_2+p_2386560«1_2+p_53803593>")

i2 = MM("M<y_6chwx_7ch«d_52ah«p_115885662+«1_2+p_2787840+1_2+p_12552610+«1_2+t_1+1_24p
_1900800+1_2+p_31998118+1_2+t_2«1_2+p_80762880+1_1sp_243091248+1_24t_1+1_24p_
2597760+ 1_1+p_42794439+t_1+1_1sp_1394880+1_2+4p_64015152+t_1«1_1+p_2027520+1_1sp_
177984«t_1x1_2+p_79432320+1_1+p_161927136>")

al2 = MM("M<y_lafh+x_1661h+d_2ddh+p_208095583«1_2+p_1943040+1_2+p_1974295+1_2«t_2+1_
2+p_1900800+1_2+«p_10778+«1_2«t_2+1_2+p_1900800+1_2+p_1868387«1_1+t_1+1_2«p_
2956800« 1 _1+p_11159238+t_1+1_2+«p_1985280+1_1+p_86275805+t_2«1_2+p_2386560x1_2+p_
42712609+t_2+«1_1+p_1499520+1_1+p_106699812>")

LISTING 6. Generators g;3, g6, 42, and a1, for a maximal subgroup of M isomorphic to
PSL3(13):2 in mmgroup format; see also Proposition 3.5 and [12]. Note that g3 is the
same element as in Listing 5, and that g6 = ysxe with ye and x¢ as in Listing 5.
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Thank you!

2'B (7:3 x He):2 (PSL2(11) x PSLa(11)):4
21424-Coy (As x A12):2 132:2PSLy(13).4

3-Figs 53+3-(2 x PSL3(5)) (7%:(3 x 2A4) x PSLy(T7)).2
222K (2):S3 (A6 % Ag x Ag).(2 x S4) (13:6 x PSL3(3)).2
210+16. PO (2) (As x PSU3(8):3):2 131+2:(3 x 48,)
22+11+22'(M24 X Sg) 52+2+4Z(Sg X GL2(5)) PSU3(4)4

31+12:2-Suz:2 (PSL3(2) x PSp,(4):2)-2 PSL,(71)

25+10+20.(S,5 x PSL5(2)) 71+4:(3 x 2S7) PSLy(59)

S3 x Th (5%:[2%] x PSU3(5)).S3 112:(5 x 2A35)
23+6+12+18.(PSL,5(2) x 3S6) (PSLa(11) x Mi):2 PSLy(41)

38-PQg (3).2 (A7 x (A5 x Ag):2%):2 PSL3(29):2

(D10 x HN)-2 5%:(3 x 2'PSLy(25)):2 7%:SLa(7)

(8%:2 x PQJ (3))'S4 THI+2.GLy(T) PSLy(19):2

32+5+10.(M11 X 254) M11 X A6-22 PSL2(13):2
33+2+6+6!(PSL3 (3) X SDle) (S5 X S5 X S5):Sg 41:40

5146:2-7,:4
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