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Abstract

▶ A general systematic study of the monoids/semigroups of
partial contractions of a finite chain and their various
subsemigroups of order-preserving/order-reversing and/or
order-decreasing transformations was initiated in 2013
supported by a grant from The Research Council of Oman
(TRC).

▶ Our aim in this talk is to present the results obtained so far by
the presenter and his co-authors as well as others. Broadly,
speaking the results can be divided into two groups: algebraic
and combinatorial enumeration.

▶ The algebraic results show that these semigroups are
nonregular (left) abundant semigroups (for n ≥ 4) whose
Green’s relations admit a nontrivial characterization.

▶ The combinatorial enumeration results show links with
Fibonacci numbers, Motzkin numbers and sequences some of
which are in the encyclopedia of integers sequences (OEIS).
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Historical Background

▶ Recall that a group is a set G with an operation ∗, satisfying
the following:

1. ∀x , y ∈ G , x ∗ y ∈ G ;
2. ∀x , y , z ∈ G , (x ∗ y) ∗ z = x ∗ (y ∗ z);
3. ∃e ∈ G with e ∗ x = x ∗ e, ∀x ∈ G .
4. ∀x ∈ G , ∃x−1 ∈ G such that

x−1 ∗ x = x ∗ x−1 = e.
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Historical Background

▶ A semigroup is a set S with an operation *, satisfying (1) and
(2) above. If it satisfies (3) also then it become a monoid.



Historical Background

There are many classes of semigroups (much more than groups
and rings) the most notable of which are: von Neumann regular,
inverse, orthodox, eventually regular, group bound, bands and
semibands. Others are: abundant, adequate, ample, quasi
adequate, nil, nilpotent, band, semibands and idempotent-free
semigroups.



Historical Background

Some examples:

▶ (Z ,+) is a group / monoid / semigroup.

▶ (Z ,×) is NOT a group but a monoid.

▶ (N,+) is NOT a group NOR a monoid but a semigroup.

▶ Mn×n(R) is NOT a group but a monoid.
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Historical Background

Further Examples:

▶ I(X ) is NOT a group but a monoid - THE SYMMETRIC
INVERSE SEMIGROUP/MONOID.

▶ B = {(m, n)|m, n ∈ N} with multiplication
(m, n) ∗ (p, q) = (m − n + t, q − p + t), where t = max(n, p)
is NOT a group but a monoid - THE BICYCLIC MONOID.
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The Symmetric Inverse Semigroup/Monoid

For a given (partial) mapping or transformation
α : Y ⊆ X → Xα ⊆ X , we denote its domain by Domα, its image
set or range by Imα and its set of fixed points by F (α). If
Domα = X then α is called a full or total transformation,
otherwise it is strictly partial.

The set of all (partial) transformations of X , denoted by P(X ), is
known as the partial symmetric semigroup/monoid.

The set of all full transformations of X , denoted by T (X ), is
known as the full symmetric semigroup.
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The Symmetric Inverse Semigroup/Monoid

The set of all partial one-to-one (more appropriately, two-to-two)
mappings of X , denoted by I(X ), is known as the symmetric
inverse semigroup. Partial one-to-one maps are also known as
subpermutations. [Cameron and Deza, 1978].

This class of semigroups and its subsemigroups provide us with a
rich source of ‘natural’ examples. However, they are worth
studying in their right as naturally occurring (mathematical)
objects. [Howie, 1987].
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The Symmetric Inverse Semigroup/Monoid

Cayley’s Theorem (1854/1870)

Every group G is isomorphic to a subgroup of the symmetric group
acting on G.

Cayley’s Theorem (Semigroup Version)

Every inverse semigroup S is isomorphic to a subsemigroup of the
symmetric inverse semigroup acting on S.
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Combinatorial Results and Problems

▶ Let X be an n-set and let E (S) denote the set of idempotents
(e2 = e) of S . Then from Laradji and Umar [19] we see that

▶ |E (In)| = 2n (trivial);

▶ |In| = Σn
p=0

(n
p

)2
p! (not trivial).

▶ Let N(S) denote the set of nilpotents (an = 0 for some
positive integer n) of S . Then

▶ |N(In)| = Σn−1
p=0

(n
p

)(n−1
p

)
p! = Σn−1

p=0|L(n, n − p)|.
▶ Let an denote the number of partial derangements (i.e.,

without fixed points) of In. Then
▶ an = n!Σn

m=0
(−1)m

m! Σn−m
j=0

(n−m
j

)
1
j! .

▶ In fact,

▶ an = (2n− 1)an−1 − (n− 1)(n− 3)an−2 − (n− 1)(n− 2)an−2,

▶ with a0 = 1.
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▶ Let S be a subsemigroup (or even a subset) of In.

▶ As in Umar [20] define

▶ Fkmp(n; k ,m, p) =
∣∣{α ∈ S |w(α) = k , f (α) = m, h(α) = p,

}∣∣
where, w(α) = max(Imα), f (α) = |F (α)| and h(α) = |Imα|.

▶ Ideally, we would like to compute Fkmp = F (n; k ,m, p) for any
S .
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Combinatorial Results and Problems

Two important lemmas:

Lemma
[20, Lemma 2.1] Let Xn = {1, 2, . . . , n} and P = {p,m, k}, where
for a given α ∈ In, we set p = h(α),m = f (α) and k = w+(α).
We also define F (n; k) = F (n; p, k) = 1 if k = p = 0. Then we
have the following:

1. n ≥ k ≥ p ≥ m ≥ 0;

2. k = 1 ⇒ p = 1;

3. p = 0 ⇔ k = 0.
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Combinatorial Results and Problems

Let c(n; p) be the number of surjective partial derangements
α : Xn −→ Yp = {1, 2, . . . , p}. Then from [19] we see that

c(n : p) = p!Σp
j=0

(
n − j

p − j

)
(−1)j

j!
.

Lemma
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Combinatorial Results and Problems

A subpermutation α ∈ In is said to be a contraction mapping if
(for all x , y ∈ Domα) |x − y | ≥ |xα− yα|. The semigroup of all
subpermutation contractions of Xn is denoted by OCIn.
A subpermutation α ∈ In is said to be order-preserving if (for all
x , y ∈ Domα) x ≤ y implies xα ≤ yα. The semigroup of all
order-preserving subpermutations of Xn is denoted by OIn.
A subpermutation α ∈ In is said to be order-decreasing if (for all
x ∈ Domα) xα ≤ x . The semigroup of all order-decreasing
subpermutations of Xn is denoted by DIn.
Let OCIn = OIn ∩ CIn; ODCIn = OCIn ∩ DIn.
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Combinatorial Results and Problems

▶ Let X be an n-set and let E (S) denote the set of idempotents
(e2 = e) of S . Then

▶ |E (OCIn)| = 2n (trivial);

▶ |OCIn| = 3n−1
5 F2n − n−5

5 F2n+1 [6, Theorem 2.9].

▶ Let N(S) denote the set of nilpotents (an = 0 for some
positive integer n) of S . Then

▶ |N(OCIn)| =?.
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▶ Let N(S) denote the set of nilpotents (an = 0 for some
positive integer n) of S . Then

▶ |N(ODCIn)| = F2n−1.
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Concluding Remarks

Further Subsemigroups
Let X be a POSET.

▶ Subsemigroups of order-preserving (reversing) transformations

▶ Subsemigroups of order-decreasing (increasing)
transformations (Umar 1992, PhD thesis)

▶ Subsemigroups of orientation-preserving (reversing)
transformations
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