Combinatorial results for certain semigroups of contraction mappings of a finite chain

A. Umar (Erdös Number: 4) ${ }^{1}$

${ }^{1}$ Department of Mathematics
Khalifa University of Science and Technology, Abu Dhabi, UAE delivered at the
45th Australasian Combinatorics Conference held at
The University of Western Australia, Perth

11 - $15^{\text {th }}$ December 2023

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Outline

- Abstract
- Historical Background
- The Symmetric Inverse Monoid/Semigroup
- Combinatorial Results and Problems
- Concluding Remarks
- Bibliography

Abstract

- A general systematic study of the monoids/semigroups of partial contractions of a finite chain and their various subsemigroups of order-preserving/order-reversing and/or order-decreasing transformations was initiated in 2013 supported by a grant from The Research Council of Oman (TRC).

Abstract

- A general systematic study of the monoids/semigroups of partial contractions of a finite chain and their various subsemigroups of order-preserving/order-reversing and/or order-decreasing transformations was initiated in 2013 supported by a grant from The Research Council of Oman (TRC).
- Our aim in this talk is to present the results obtained so far by the presenter and his co-authors as well as others. Broadly, speaking the results can be divided into two groups: algebraic and combinatorial enumeration.

Abstract

- A general systematic study of the monoids/semigroups of partial contractions of a finite chain and their various subsemigroups of order-preserving/order-reversing and/or order-decreasing transformations was initiated in 2013 supported by a grant from The Research Council of Oman (TRC).
- Our aim in this talk is to present the results obtained so far by the presenter and his co-authors as well as others. Broadly, speaking the results can be divided into two groups: algebraic and combinatorial enumeration.
- The algebraic results show that these semigroups are nonregular (left) abundant semigroups (for $n \geq 4$) whose Green's relations admit a nontrivial characterization.

Abstract

- A general systematic study of the monoids/semigroups of partial contractions of a finite chain and their various subsemigroups of order-preserving/order-reversing and/or order-decreasing transformations was initiated in 2013 supported by a grant from The Research Council of Oman (TRC).
- Our aim in this talk is to present the results obtained so far by the presenter and his co-authors as well as others. Broadly, speaking the results can be divided into two groups: algebraic and combinatorial enumeration.
- The algebraic results show that these semigroups are nonregular (left) abundant semigroups (for $n \geq 4$) whose Green's relations admit a nontrivial characterization.
- The combinatorial enumeration results show links with Fibonacci numbers, Motzkin numbers and sequences some of which are in the encyclopedia of integers sequences (OEIS).

Historical Background

- Recall that a group is a set G with an operation $*$, satisfying the following:

Historical Background

- Recall that a group is a set G with an operation $*$, satisfying the following:

$$
\text { 1. } \forall x, y \in G, x * y \in G \text {; }
$$

2.
3. $\exists e \in G$ with $e * x=x * e, \forall x \in G$.
4.

Historical Background

- Recall that a group is a set G with an operation $*$, satisfying the following:

1. $\forall x, y \in G, x * y \in G$;
2. $\forall x, y, z \in G,(x * y) * z=x *(y * z)$;
3.
4.

Historical Background

- Recall that a group is a set G with an operation $*$, satisfying the following:

1. $\forall x, y \in G, x * y \in G$;
2. $\forall x, y, z \in G,(x * y) * z=x *(y * z)$;
3. $\exists e \in G$ with $e * x=x * e, \forall x \in G$.
4.

Historical Background

- Recall that a group is a set G with an operation $*$, satisfying the following:

1. $\forall x, y \in G, x * y \in G$;
2. $\forall x, y, z \in G,(x * y) * z=x *(y * z)$;
3. $\exists e \in G$ with $e * x=x * e, \forall x \in G$.
4. $\forall x \in G, \exists x^{-1} \in G$ such that $x^{-1} * x=x * x^{-1}=e$.

Historical Background

- A semigroup is a set S with an operation *, satisfying (1) and (2) above. If it satisfies (3) also then it become a monoid.

Historical Background

There are many classes of semigroups (much more than groups and rings) the most notable of which are: von Neumann regular, inverse, orthodox, eventually regular, group bound, bands and semibands. Others are: abundant, adequate, ample, quasi adequate, nil, nilpotent, band, semibands and idempotent-free semigroups.

Historical Background

Some examples:

- $(Z,+)$ is a group / monoid / semigroup.
$\Rightarrow(Z, \times)$ is NOT a group but a monoid.
- $(N,+)$ is NOT a group NOR a monoid but a semigroup.
- $M_{n \times n}(R)$ is NOT a group but a monoid.

Historical Background

Some examples:

- $(Z,+)$ is a group / monoid / semigroup.
- (Z, \times) is NOT a group but a monoid.
$\Rightarrow(N,+)$ is NOT a group NOR a monoid but a semigroup.
- $M_{n \times n}(R)$ is NOT a group but a monoid.

Historical Background

Some examples:

- $(Z,+)$ is a group / monoid / semigroup.
- (Z, \times) is NOT a group but a monoid.
- $(N,+)$ is NOT a group NOR a monoid but a semigroup.
- $M_{n \times n}(R)$ is NOT a group but a monoid.

Historical Background

Some examples:

- $(Z,+)$ is a group / monoid / semigroup.
- (Z, \times) is NOT a group but a monoid.
- $(N,+)$ is NOT a group NOR a monoid but a semigroup.
- $M_{n \times n}(R)$ is NOT a group but a monoid.

Historical Background

Further Examples:
> $\rightarrow \mathcal{I}(X)$ is NOT a group but a monoid - THE SYMMETRIC INVERSE SEMIGROUP/MONOID.
> - $B=\{(m, n) \mid m, n \in N\}$ with multinlication $(m, n) *(p, q)=(m-n+t, q-p+t)$, where $t=\max (n, p)$ is NOT a group but a monoid - THE BICYCLIC MONOID.

Historical Background

Further Examples:

- $\mathcal{I}(X)$ is NOT a group but a monoid - THE SYMMETRIC INVERSE SEMIGROUP/MONOID.

Historical Background

Further Examples:

- $\mathcal{I}(X)$ is NOT a group but a monoid - THE SYMMETRIC INVERSE SEMIGROUP/MONOID.
- $B=\{(m, n) \mid m, n \in N\}$ with multiplication $(m, n) *(p, q)=(m-n+t, q-p+t)$, where $t=\max (n, p)$ is NOT a group but a monoid - THE BICYCLIC MONOID.

The Symmetric Inverse Semigroup/Monoid

For a given (partial) mapping or transformation
$\alpha: Y \subseteq X \rightarrow X \alpha \subseteq X$, we denote its domain by Dom α, its image set or range by $\operatorname{Im} \alpha$ and its set of fixed points by $F(\alpha)$. If Dom $\alpha=X$ then α is called a full or total transformation, otherwise it is strictly partial.

The Symmetric Inverse Semigroup/Monoid

For a given (partial) mapping or transformation
$\alpha: Y \subseteq X \rightarrow X \alpha \subseteq X$, we denote its domain by Dom α, its image set or range by $\operatorname{Im} \alpha$ and its set of fixed points by $F(\alpha)$. If Dom $\alpha=X$ then α is called a full or total transformation, otherwise it is strictly partial.

The set of all (partial) transformations of X, denoted by $\mathcal{P}(X)$, is known as the partial symmetric semigroup/monoid.

The Symmetric Inverse Semigroup/Monoid

For a given (partial) mapping or transformation
$\alpha: Y \subseteq X \rightarrow X \alpha \subseteq X$, we denote its domain by Dom α, its image set or range by $\operatorname{Im} \alpha$ and its set of fixed points by $F(\alpha)$. If Dom $\alpha=X$ then α is called a full or total transformation, otherwise it is strictly partial.

The set of all (partial) transformations of X, denoted by $\mathcal{P}(X)$, is known as the partial symmetric semigroup/monoid.

The set of all full transformations of X, denoted by $\mathcal{T}(X)$, is known as the full symmetric semigroup.

The Symmetric Inverse Semigroup/Monoid

The set of all partial one-to-one (more appropriately, two-to-two) mappings of X, denoted by $\mathcal{I}(X)$, is known as the symmetric inverse semigroup. Partial one-to-one maps are also known as subpermutations. [Cameron and Deza, 1978].

The Symmetric Inverse Semigroup/Monoid

The set of all partial one-to-one (more appropriately, two-to-two) mappings of X, denoted by $\mathcal{I}(X)$, is known as the symmetric inverse semigroup. Partial one-to-one maps are also known as subpermutations. [Cameron and Deza, 1978].

This class of semigroups and its subsemigroups provide us with a rich source of 'natural' examples. However, they are worth studying in their right as naturally occurring (mathematical) objects. [Howie, 1987].

The Symmetric Inverse Semigroup/Monoid

Cayley's Theorem (1854/1870)

Every group G is isomorphic to a subgroup of the symmetric group acting on G.

Cayley's Theorem (Semigroup Version)
Every inverse semigroup S is isomorphic to a subsemigroup of the symmetric inverse semigroup acting on S.

The Symmetric Inverse Semigroup/Monoid

Cayley's Theorem (1854/1870)
Every group G is isomorphic to a subgroup of the symmetric group acting on G.

Cayley's Theorem (Semigroup Version)
Every inverse semigroup S is isomorphic to a subsemigroup of the symmetric inverse semigroup acting on S.

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then from Laradji and Umar [19] we see that

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!($ not trivial $)$.

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\sum_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\sum_{p=0}^{n-1}|L(n, n-p)|$.

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\Sigma_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\Sigma_{p=0}^{n-1}|L(n, n-p)|$.
- Let a_{n} denote the number of partial derangements (i.e., without fixed points) of \mathcal{I}_{n}. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\Sigma_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\Sigma_{p=0}^{n-1}|L(n, n-p)|$.
- Let a_{n} denote the number of partial derangements (i.e., without fixed points) of \mathcal{I}_{n}. Then
- $a_{n}=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \sum_{j=0}^{n-m}\binom{n-m}{j} \frac{1}{j!}$.

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\Sigma_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\Sigma_{p=0}^{n-1}|L(n, n-p)|$.
- Let a_{n} denote the number of partial derangements (i.e., without fixed points) of \mathcal{I}_{n}. Then
- $a_{n}=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \sum_{j=0}^{n-m}\binom{n-m}{j} \frac{1}{j!}$.
- In fact,

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\Sigma_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\Sigma_{p=0}^{n-1}|L(n, n-p)|$.
- Let a_{n} denote the number of partial derangements (i.e., without fixed points) of \mathcal{I}_{n}. Then
- $a_{n}=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \sum_{j=0}^{n-m}\binom{n-m}{j} \frac{1}{j!}$.
- In fact,
- $a_{n}=(2 n-1) a_{n-1}-(n-1)(n-3) a_{n-2}-(n-1)(n-2) a_{n-2}$,

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then from Laradji and Umar [19] we see that
- $\left|E\left(\mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{I}_{n}\right|=\sum_{p=0}^{n}\binom{n}{p}^{2} p!$ (not trivial).
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{I}_{n}\right)\right|=\Sigma_{p=0}^{n-1}\binom{n}{p}\binom{n-1}{p} p!=\Sigma_{p=0}^{n-1}|L(n, n-p)|$.
- Let a_{n} denote the number of partial derangements (i.e., without fixed points) of \mathcal{I}_{n}. Then
- $a_{n}=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \sum_{j=0}^{n-m}\binom{n-m}{j} \frac{1}{j!}$.
- In fact,
- $a_{n}=(2 n-1) a_{n-1}-(n-1)(n-3) a_{n-2}-(n-1)(n-2) a_{n-2}$,
- with $a_{0}=1$.

Combinatorial Results and Problems

- Let S be a subsemigroup (or even a subset) of \mathcal{I}_{n}.

Combinatorial Results and Problems

- Let S be a subsemigroup (or even a subset) of \mathcal{I}_{n}.
- As in Umar [20] define

Combinatorial Results and Problems

- Let S be a subsemigroup (or even a subset) of \mathcal{I}_{n}.
- As in Umar [20] define
- $F_{k m p}(n ; k, m, p)=|\{\alpha \in S \mid w(\alpha)=k, f(\alpha)=m, h(\alpha)=p\}$, where, $w(\alpha)=\max (\operatorname{Im} \alpha), f(\alpha)=|F(\alpha)|$ and $h(\alpha)=|\operatorname{Im} \alpha|$.

Combinatorial Results and Problems

- Let S be a subsemigroup (or even a subset) of \mathcal{I}_{n}.
- As in Umar [20] define
- $F_{k m p}(n ; k, m, p)=|\{\alpha \in S \mid w(\alpha)=k, f(\alpha)=m, h(\alpha)=p\}$, where, $w(\alpha)=\max (\operatorname{Im} \alpha), f(\alpha)=|F(\alpha)|$ and $h(\alpha)=|\operatorname{Im} \alpha|$.
- Ideally, we would like to compute $F_{k m p}=F(n ; k, m, p)$ for any S.

Combinatorial Results and Problems

Two important lemmas:

Combinatorial Results and Problems

Two important lemmas:
Lemma
[20, Lemma 2.1] Let $X_{n}=\{1,2, \ldots, n\}$ and $P=\{p, m, k\}$, where for a given $\alpha \in \mathcal{I}_{n}$, we set $p=h(\alpha), m=f(\alpha)$ and $k=w^{+}(\alpha)$. We also define $F(n ; k)=F(n ; p, k)=1$ if $k=p=0$. Then we have the following:

1. $n \geq k \geq p \geq m \geq 0$;
2. $k=1 \Rightarrow p=1$;
3. $p=0 \Leftrightarrow k=0$.

Combinatorial Results and Problems

Let $c(n ; p)$ be the number of surjective partial derangements $\alpha: X_{n} \longrightarrow Y_{p}=\{1,2, \ldots, p\}$. Then from [19] we see that

$$
c(n: p)=p!\Sigma_{j=0}^{p}\binom{n-j}{p-j} \frac{(-1)^{j}}{j!} .
$$

Combinatorial Results and Problems

Let $c(n ; p)$ be the number of surjective partial derangements $\alpha: X_{n} \longrightarrow Y_{p}=\{1,2, \ldots, p\}$. Then from [19] we see that

$$
c(n: p)=p!\sum_{j=0}^{p}\binom{n-j}{p-j} \frac{(-1)^{j}}{j!} .
$$

Lemma

[19, Theorem 1] Let $c(n ; p)$ and $F(n ; k, m, p)$ be as defined above.
Then

$$
F(n ; k, m, p)=\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)
$$

Combinatorial Results and Problems

Table-1	
\mathcal{I}_{n}	$[19,20,21]$

Combinatorial Results and Problems

Table-1			
\mathcal{I}_{n}	$[19,20,21]$		
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$		

Combinatorial Results and Problems

Table-1		
\mathcal{I}_{n}	$[19,20,21]$	
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$	
$F(n ; k, p)$	$\binom{n}{p}\binom{k-1}{p-1} p!$	

Combinatorial Results and Problems

Table-1			
\mathcal{I}_{n}	$[19,20,21]$		
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$		
$F(n ; k, p)$	$\binom{n}{p}\binom{k-1}{p-1} p!$		
$F(n ; m, p)$	$\frac{n!}{m!(n-p)!} \sum_{j=0}^{p-m}\binom{n-m-j}{p-m-j} \frac{(-1)^{j}}{j!}$		

Combinatorial Results and Problems

Table-1	
\mathcal{I}_{n}	$[19,20,21]$
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$
$F(n ; k, p)$	$\binom{n}{p}\binom{k-1}{p-1} p!$
$F(n ; m, p)$	$\frac{n!}{m!(n-p)!} \sum_{j=0}^{p-m}\binom{n-m-j}{p-m-j} \frac{(-1) j}{j!}$
$F(n ; k)$	$\sum_{p=0}^{k}\binom{n}{p}\binom{k-1}{p-1} p!$

Combinatorial Results and Problems

Table-1	
\mathcal{I}_{n}	$[19,20,21]$
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$
$F(n ; k, p)$	$\binom{n}{p}\binom{k-1}{p-1} p!$
$F(n ; m, p)$	$\frac{n!}{m!(n-p)!} \sum_{j=0}^{p-m}\binom{n-m-j}{p-m-j} \frac{(-1)^{j}}{j!}$
$F(n ; k)$	$\sum_{p=0}^{k}\binom{n}{p}\binom{k-1}{p-1} p!$
$F(n ; m)$	$\frac{n!}{m!} \sum_{i=0}^{n-m} \frac{(-1)^{i}}{i!} \sum_{j=0}^{n-i}\binom{n-1}{j} \frac{1}{j!}$

Combinatorial Results and Problems

Table-1	
\mathcal{I}_{n}	$[19,20,21]$
$F(n ; k, m)$	$\sum_{p=0}^{k}\binom{k-1}{p-1}\binom{p}{m} c(n-m ; p-m)$
$F(n ; k, p)$	$\binom{n}{p}\binom{k-1}{p-1} p!$
$F(n ; m, p)$	$\frac{n!}{m!(n-p)!} \sum_{j=0}^{p-m}\binom{n-m-j}{p-m-j} \frac{(-1)^{j}}{j!}$
$F(n ; k)$	$\sum_{p=0}^{k}\binom{n}{p}\binom{k-1}{p-1} p!$
$F(n ; m)$	$\frac{n!}{m!} \sum_{i=0}^{n-m} \frac{(-1)^{i}}{i!} \sum_{j=0}^{n-i}\binom{n-1}{j} \frac{1}{j!}$
$F(n ; p)$	$\binom{n}{p}^{2} p!$

Combinatorial Results and Problems

A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be a contraction mapping if (for all $x, y \in \operatorname{Dom} \alpha$) $|x-y| \geq|x \alpha-y \alpha|$. The semigroup of all subpermutation contractions of X_{n} is denoted by $\mathcal{O C} \mathcal{I}_{n}$.

Combinatorial Results and Problems

A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be a contraction mapping if (for all $x, y \in \operatorname{Dom} \alpha$) $|x-y| \geq|x \alpha-y \alpha|$. The semigroup of all subpermutation contractions of X_{n} is denoted by $\mathcal{O C} \mathcal{I}_{n}$.
A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-preserving if (for all $x, y \in \operatorname{Dom} \alpha) x \leq y$ implies $x \alpha \leq y \alpha$. The semigroup of all order-preserving subpermutations of X_{n} is denoted by $\mathcal{O} \mathcal{I}_{n}$.
A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-decrea
$x \in \operatorname{Dom} \alpha) x \alpha \leq x$. The semigroup of all order-de
subpermutations of X_{n} is denoted by $\mathcal{D I _ { n }}$.
Let $\mathcal{O C I _ { n } = \mathcal { O I }} \cap \mathcal{C I}_{n} ; \mathcal{O C C I} I_{n}=\mathcal{O C I} I_{n} \cap \mathcal{D} I_{n}$.

Combinatorial Results and Problems

A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be a contraction mapping if (for all $x, y \in \operatorname{Dom} \alpha$) $|x-y| \geq|x \alpha-y \alpha|$. The semigroup of all subpermutation contractions of X_{n} is denoted by $\mathcal{O C} \mathcal{I}_{n}$.
A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-preserving if (for all $x, y \in \operatorname{Dom} \alpha) x \leq y$ implies $x \alpha \leq y \alpha$. The semigroup of all order-preserving subpermutations of X_{n} is denoted by $\mathcal{O} \mathcal{I}_{n}$. A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-decreasing if (for all $x \in \operatorname{Dom} \alpha) x \alpha \leq x$. The semigroup of all order-decreasing subpermutations of X_{n} is denoted by $\mathcal{D} \mathcal{I}_{n}$.

Combinatorial Results and Problems

A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be a contraction mapping if (for all $x, y \in \operatorname{Dom} \alpha$) $|x-y| \geq|x \alpha-y \alpha|$. The semigroup of all subpermutation contractions of X_{n} is denoted by $\mathcal{O C} \mathcal{I}_{n}$.
A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-preserving if (for all $x, y \in \operatorname{Dom} \alpha) x \leq y$ implies $x \alpha \leq y \alpha$. The semigroup of all order-preserving subpermutations of X_{n} is denoted by $\mathcal{O} \mathcal{I}_{n}$. A subpermutation $\alpha \in \mathcal{I}_{n}$ is said to be order-decreasing if (for all $x \in \operatorname{Dom} \alpha) x \alpha \leq x$. The semigroup of all order-decreasing subpermutations of X_{n} is denoted by $\mathcal{D \mathcal { I } _ { n }}$.
Let $\mathcal{O C I}_{n}=\mathcal{O I}_{n} \cap \mathcal{C} \mathcal{I}_{n} ; \mathcal{O D C I} \mathcal{I}_{n}=\mathcal{O C} \mathcal{I}_{n} \cap \mathcal{D} \mathcal{I}_{n}$.

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then
- $\left|E\left(\mathcal{O C} \mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then
- $\left|E\left(\mathcal{O C I}_{n}\right)\right|=2^{n}$ (trivial);
$-\left|\mathcal{O C} \mathcal{I}_{n}\right|=\frac{3 n-1}{5} F_{2 n}-\frac{n-5}{5} F_{2 n+1}[6$, Theorem 2.9].

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then
- $\left|E\left(\mathcal{O C I}_{n}\right)\right|=2^{n}$ (trivial);
$-\left|\mathcal{O C} \mathcal{I}_{n}\right|=\frac{3 n-1}{5} F_{2 n}-\frac{n-5}{5} F_{2 n+1}$ [6, Theorem 2.9].
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then
- $\left|E\left(\mathcal{O C I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{O C} \mathcal{I}_{n}\right|=\frac{3 n-1}{5} F_{2 n}-\frac{n-5}{5} F_{2 n+1}$ [6, Theorem 2.9].
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{O C} \mathcal{I}_{n}\right)\right|=$?.

Combinatorial Results and Problems

Table-2	
$\mathcal{O C \mathcal { I }}_{n}$	$[6]$

Combinatorial Results and Problems

Table-2			
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$		
$F(n ; k, m, p)$	$?$		

Combinatorial Results and Problems

Table-2		
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$	
$F(n ; k, m, p)$	$?$	
$F(n ; k, m)$	$?$	

Combinatorial Results and Problems

Table-2		
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$	
$F(n ; k, m, p)$	$?$	
$F(n ; k, m)$	$?$	
$F(n ; k, p)$	$?$	

Combinatorial Results and Problems

Table-2	
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$\binom{n+p-m-2}{2 p-m}+2\binom{n+p-m-1}{2 p-m}$

Combinatorial Results and Problems

Table-2	
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$?$
$F(n ; k)$	$\left.\begin{array}{c}n+p-m-2 \\ 2 p-m\end{array}\right)+2\binom{n+p-m-1}{2 p-m}$

Combinatorial Results and Problems

Table-2			
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$		
$F(n ; k, m, p)$	$?$		
$F(n ; k, m)$	$?$		
$F(n ; k, p)$	$?$		
$F(n ; m, p)$	$\left.\begin{array}{c}n+p-m-2 \\ 2 p-m\end{array}\right)+2\binom{n+p-m-1}{2 p-m}$		
$F(n ; k)$	$\left.\sum_{p=0}^{n}\left\{\begin{array}{c}n+p-m-2 \\ 2 p-m\end{array}\right)+2\binom{n+p-m-1}{2 p-m}\right\}$		
$F(n ; m)$			

Combinatorial Results and Problems

Table-2	
$\mathcal{O C} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$\left.\begin{array}{c}n+p-m-2 \\ 2 p-m\end{array}\right)+2\binom{n+p-m-1}{2 p-m}$
$F(n ; k)$	$\left.\left.\sum_{\substack{n \\ p=0}} \begin{array}{c}n+p-m-2 \\ 2 p-m\end{array}\right)+2\binom{n+p-m-1}{2 p-m}\right\}$
$F(n ; m)$	$n\binom{n+p-1}{2 p-1}-(p-1)\binom{n+p}{2 p}$ $F(n ; p)$

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then
- $\left|E\left(\mathcal{O D C I} \mathcal{I}_{n}\right)\right|=2^{n}$ (trivial);

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents $\left(e^{2}=e\right)$ of S. Then
- $\left|E\left(\mathcal{O D C I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{O D C I} \mathcal{I}_{n}\right|=F_{2 n+1}[6$, Theorem 3.6].

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then
- $\left|E\left(\mathcal{O D C I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{O D C I} \mathcal{I}_{n}\right|=F_{2 n+1}[6$, Theorem 3.6].
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then

Combinatorial Results and Problems

- Let X be an n-set and let $E(S)$ denote the set of idempotents ($e^{2}=e$) of S. Then
- $\left|E\left(\mathcal{O D C I}_{n}\right)\right|=2^{n}$ (trivial);
- $\left|\mathcal{O D C I} \mathcal{I}_{n}\right|=F_{2 n+1}[6$, Theorem 3.6].
- Let $N(S)$ denote the set of nilpotents ($a^{n}=0$ for some positive integer n) of S. Then
- $\left|N\left(\mathcal{O D C I}_{n}\right)\right|=F_{2 n-1}$.

Combinatorial Results and Problems

Table-3			
$\mathcal{O D C I}_{n}$	$[6]$		

Combinatorial Results and Problems

Table-3	
$\mathcal{O D C I}{ }_{n}$	$[6]$
$F(n ; k, m, p)$	$?$

Combinatorial Results and Problems

Table-3		
$\mathcal{O D C I}{ }_{n}$	$[6]$	
$F(n ; k, m, p)$	$?$	
$F(n ; k, m)$	$?$	

Combinatorial Results and Problems

Table-3			
$\mathcal{O D C I}_{n}$	$[6]$		
$F(n ; k, m, p)$	$?$		
$F(n ; k, m)$	$?$		
$F(n ; k, p)$	$?$		

Combinatorial Results and Problems

Table-3	
$\mathcal{O D C I} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$\binom{n+p-m-1}{2 p-m}(m<p) ;\binom{n}{m}(m=p)$

Combinatorial Results and Problems

Table-3	
$\mathcal{O D C I} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$?$
$F(n ; k)$	$\left.\begin{array}{c}n+p-m-1 \\ 2 p-m\end{array}\right)(m<p) ;\binom{n}{m}(m=p)$

Combinatorial Results and Problems

Table-3	
$\mathcal{O D C I} \mathcal{I}_{n}$	$[6]$
$F(n ; k, m, p)$	$?$
$F(n ; k, m)$	$?$
$F(n ; k, p)$	$?$
$F(n ; m, p)$	$\left.\left.\begin{array}{c}\binom{n+p-m-1}{2 p-m}(m<p) ;\binom{n}{m}(m=p) \\ \hline F(n ; k) \\ \hline F(n ; m) \\ \hline\end{array} \sum_{\substack{n=0 \\ p=0 \\ \hline \\ 2 p-m}}^{n+p-m-2}\right)+2\binom{n+p-m-1}{2 p-m}\right\}$

Combinatorial Results and Problems

Table-3	
$\mathcal{O D C I}_{n}$	[6]
$F(n ; k, m, p)$?
$F(n ; k, m)$?
$F(n ; k, p)$?
$F(n ; m, p)$	$\binom{n+p-m-1}{2 p-m}(m<p) ;\binom{n}{m}(m=p)$
$F(n ; k)$?
$F(n ; m)$	$\sum_{p=0}^{n}\left\{\binom{n+p-m-2}{2 p-m}+2\binom{n+p-m-1}{2 p-m}\right\}$
$F(n ; p)$	$\binom{n+p}{2 p}$

Concluding Remarks

Further Subsemigroups
Let X be a POSET

- Subsemigroups of order-preserving (reversing) transformations
- Subsemigroups of order-decreasing (increasing)
transformations (Umar 1992, PhD thesis)
- Subsemigroups of orientation-preserving (reversing)
transformations

Concluding Remarks

Further Subsemigroups Let X be a POSET.
> Subsemigroups of order-preserving (reversing) transformations

- Subsemigroups of order-decreasing (increasing)
transformations (Umar 1992, PhD thesis)
- Subsemigroups of orientation-preserving (reversing)
transformations

Concluding Remarks

Further Subsemigroups
Let X be a POSET.

- Subsemigroups of order-preserving (reversing) transformations
- Subsemigroups of order-decreasing (increasing) transformations (Umar 1992, PhD thesis)
- Subsemigroups of orientation-preserving (reversing) transformations

Concluding Remarks

Further Subsemigroups
Let X be a POSET.

- Subsemigroups of order-preserving (reversing) transformations
- Subsemigroups of order-decreasing (increasing) transformations (Umar 1992, PhD thesis)
- Subsemigroups of orientation-preserving (reversing) transformations

Concluding Remarks

Further Subsemigroups
Let X be a POSET.

- Subsemigroups of order-preserving (reversing) transformations
- Subsemigroups of order-decreasing (increasing) transformations (Umar 1992, PhD thesis)
- Subsemigroups of orientation-preserving (reversing) transformations

圊 A．D．Adeshola，and A．Umar，Combinatorial results for certain semigroups of order－preserving full contraction mappings of a finite chain．JCMCC． 106 （2017），34－49．

圊 F．AI－Kharousi，G．U．Garba，M．J．Ibrahim，A．T．Imam，and A．Umar，On the semigroup of finite order－preserving partial injective contraction mappings．（Submitted）．

囦 F．AI－Kharousi，R．Kehinde，and A．Umar，Combinatorial results for certain semigroups of partial isometries of a finite chain．Australas．J．Combin． 58 （2014），365－375．

R．Al－Kharousi，R．Kehinde，and A．Umar，Combinatorial results for certain semigroups of order－decreasing partial isometries of a finite chain．Journal of Algebra，Number Theory：Advances and Applications．19（1）（2018），29－49．
圕 Alnadabi，W．，Some combinatorial results in the full and partial symmetric semigroups and their sets of idempotents， MSc．thesis，Sultan Qaboos University，Oman（2015）．

屢 B．M．Ahmed，N．Al－Dhamri，F．Al－Kharousi，G．Klein and A．Umar，Combinatorial results for order－preserving partial injective contraction mappings．Contributions to Discrete Math．（Accepted．）

嗇 D．Borwein，S．Rankin，and L．Renner，Enumeration of injective partial transformations．Discrete Math． 73 （1989）， 291－296．
－Comtet，L．，Advanced Combinatorics：the art of finite and infinite expansions，D．Reidel Publishing Company，Dordrecht， Holland，（1974）．

V．H．Fernandes，The monoid of all injective orientation－preserving partial transformations on a finite chain． Comm．Algebra 28 （2000），3401－3426．
圊 Ganyushkin，O．and Mazorchuk，V．，Classical Finite Transformation Semigroups：An Introduction，Springer， London，（2009）．

围 G．U．Garba，Nilpotents in semigroups of partial one－to－one order－preserving mappings．Semigroup Forum 48 （1994）， 37－49．
雷 J．M．Howie，Fundamentals of semigroup theory．London Mathematical Society Monographs．New series，12．Oxford Science Publications．The Clarendon Press，Oxford University Press，New York， 1995.
A．Laradji and A．Umar，Combinatorial results for the symmetric inverse semigroup．Semigroup Forum 75 （2007）， 221－236．
國 Laradji，A．and Umar，A．，Some combinatorial properties of the symmetric monoid．International Journal of Algebra and Computation21（No．6）（2011）857－865．

囯 S．Lipscomb，Symmetric Inverse Semigroups，Mathematical Surveys and Monographs，46．American mathematical Society， Providence，R．I．， 1996.

O．A．Ojo，F．Al－Kharousi，and A．Umar，On the number of idempotent partial contraction mappings of a finite chain． Open Journal of Discrete Mathematics．11（3）（2021），94－101．
囯 Riordan J．，Combinatorial Identities，（John Wiley and Sons， New York，1968）．

E Sloane，N．J．A．（Ed．），The online Encyclopedia of Integer Sequences，2011．Available at http：／／oeis．org／．
囯 A．Umar，On the semigroups of partial one－to－one order－decreasing finite transformations，Proc．Roy．Soc． Edinburgh，Sect．A， 123 （1993），355－363．

䡒 A．Umar，Some combinatorial problems in the theory of symmetric inverse semigroups．Algebra Discrete Math． 9 （2010），115－126．
嗇 Umar A．，Some combinatorial problems in the theory of partial transformation semigroups，Algebra and Discrete Mathematics Journal，Volume 17 （2014）110－134．

Whenever you can, count.

Whenever you can, count. -Sir Francis Galton.

Vote of thanks

THANK YOU ALL!

