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Basic definitions

All graphs are finite, connected and simple (undirected, loopless,
no multiple edges).

An arc in a graph is an ordered pair of adjacent vertices.

A graph T is G-vertex-transitive (G-arc-transitive) if G < Aut(I')
acts transitively on the the vertex-set (arc-set) of T

Arc-transitivity implies edge-transitivity and vertex-transitivity
(under mild hypothesis).



Tutte's Theorem

Theorem (Tutte 1947)

If T is a 3-valent arc-transitive graph and v is a vertex of ', then
|Aut(l),| < 48.

Example
If T is the Petersen graph, then |[Aut(l),| = 12.

By Orbit-Stabiliser, [Aut(I)| grows linearly with respect to |VT|:

|Aut(l)| < 48|VT|



Consequences

Tutte's Theorem allows one (e.g. Marston Conder) to construct
3-valent arc-transitive graphs of “small” order (up to 10000, say).

Theorem (Poto¢nik, Spiga, V 2017)

The number of 3-valent arc-transitive graphs of order at most n is

n¢ logn

~

Many other results: structure, etc.



Failed generalisations

Let I, = C,[Ka:
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[+ is 4-valent and arc-transitive. Moreover |Aut(l,),| > 2" which
is exponential in [VI,| = 2r.

There are related 3-valent vertex-transitive examples with
|Aut(l),| exponential in |VT]|.



Local action
Let I be a G-vertex-transitive graph and let v be a vertex of I'.

Let G\f(v) denote the permutation group induced by the action of
G, on the neighbourhood I'(v).

(I, G) is locally-L if G\c(v) is permutation isomorphic to L.

Example
(C/[K2], Aut(C,[K2]) is locally-Dy. Also
locally-(Sym(2) : Sym(2)).

Remark

" is G-arc-transitive if and only if Gvr(v)

is transitive.



Graph-restrictive
A permutation group L is graph-restrictive if there exists a

constant C such that if (I', G) is a locally-L pair, then |G,| < C.

Tutte's Theorem: Transitive groups of degree 3 are
graph-restrictive.

Gardiner (1973): All transitive groups of degree 4 except D4 are
graph-restrictive.

Weiss, Trofimov: 2-transitive groups and transitive groups of prime
degree are graph-restrictive.

Conjecture (Pototnik, Spiga, V 2011)
Graph-restrictive <= semiprimitive

(A permutation group is semiprimitive if every normal subgroup is
either transitive or semiregular.)



More general growth

We can (informally) define the “growth rate” of a permutation
group L: in the class of locally-L pairs (I', G), how fast can |G, |
grow as a function of |[VI'|? (Least upper bound.)

Graph-restrictive <= "“constant growth”.

The fastest possible growth is exponential (for example Dy).

Problem
Find the growth rate of every permutation group.



A few results

Proposition (Poto¢nik, Spiga, V 2014)

(Non-trivial, imprimitive) Wreath products have exponential
growth.

Theorem (Poto¢nik, Spiga, V 2014)

If a permutation groups has an imprimitivity system with two
blocks and is not regular, then it has at least polynomial growth.
Moreover, if the pointwise stabiliser of one block is not trivial, then
it has exponential growth.

D, has constant growth when n is odd, exponential growth when
n =4, and polynomial growth otherwise.



Small degree

There are 87 transitive groups of degree at most 8.

Theorem (as of 2019)

» 40 have constant growth.
» 4 have polynomial growth.
» 37 have exponential growth.

» 6 groups of unknown growth.



Small degree

There are 87 transitive groups of degree at most 8.

Theorem (as of 2019)

» 40 have constant growth.
» 4 have polynomial growth.
» 37 have exponential growth.

» 6 groups of unknown growth. (Three of degree 6, three of
degree 8.)



The groups of unknown growth

‘ Sym(2) ¢ Sym(n) ‘
_— ‘

Sym(2) 2 Alt(n) Sym(2)"! x Sym(n) | |Sym(2)"1.Sym(n)

Sym(2)"~1 x Alt(n)

Sym(2)" x Sym(n) = Sym(2) ! Sym(n) < Sym(2n).
This is the group preserving a partition of n parts of size 2.
(For example, the automorphism group of a set of n disjoint edges.)

Sym(2)"~! x Sym(n) is the same, except one is only allowed to
flip an even number of edges.

The groups of unknown growth are the groups in red above, for
n=3and n=4.



Wreath groups have exponential growth
To show: Sym(2) ¢ Sym(n) has exponential growth.
Let (', G;) be an infinite family of locally-Sym(n) pairs.

Let A, = I,[K>] and
H, = Sym(2)1 G, = Sym(2)IVT"l x G, < Aut(A,).

(A, H,) is locally-(Sym(2) : Sym(n)) and |H,| = 2IVT|G,| is
exponential in [VA,]|.

Can handle any wreath product with minor changes.



Sym(2)"! x Sym(n)

To show: Sym(2)"~! x Sym(n) has exponential growth.

Let (I'r, G;) be an infinite family of locally-Sym(n) pairs.

Let A, = I,[K2].

Now, H, = M x G, < Sym(2)VT"l x G,, for some M.

We need M a “large” subspace of Sym(2)/VTl preserved by G,.

How to get correct local action?
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Zero-sum around zero

How to make sure we get correct local action?

Conclusion: every element of M should have the “zero-sum around
zero" property.



Zero-sum around zero

Let I be a graph and let
Xr = {x eFy': (x(v)=0)= ZX(“) = 0} .
ur~v

Note that X is not a subgroup/subspace, but we are looking for
“large” groups contained in X (and preserved by a “nice” group).
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Zero-sum around zero

Let I be a graph and let

Xr = {x eFy': (x(v)=0)= Zx(u) :0}.

ur~v

Note that X is not a subgroup/subspace, but we are looking for
“large” groups contained in X (and preserved by a “nice” group).

Example

Eigenspaces (for the adjaceny matrix Ar) over [Fy.

Proposition

If G is a vertex-transitive subgroup of Aut(I'), then the
eigenspaces of Ar are exactly the maximal G-modules of X.

(Transitivity is important.)



Reformulation using eigenspaces

To show that Sym(2)"~! x Sym(n) has exponential growth, it
suffices to find:

» an infinite family (I';, G;) of locally-Sym(n) pairs such that

» the dimension of some eigenspace over [, of (the adjacency
matrix of) ', grows linearly with |VT,|.



Reformulation using eigenspaces

To show that Sym(2)"~! x Sym(n) has exponential growth, it
suffices to find:

» an infinite family (I';, G;) of locally-Sym(n) pairs such that

» the dimension of some eigenspace over [, of (the adjacency
matrix of) ', grows linearly with |VT,|.

Let's get calculating!



Some data

Eigenspaces over Fy of locally-Alt(4) and Sym(4) graphs of order
at most 2000 (Poto¢nik 2008):
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Results

Theorem (Hujdurovi¢, Potoénik, V (2021))

There exists locally-Sym(3) 3-valent graphs such that the
dimension of the 1-eigenspace over F» of the adjacency matrix
grows linearly with the order of the graph.

Corollary

Sym(2)? x Sym(3) has exponential growth.

We also get the other two open groups of degree 6 with a small
modification of the method.

Theorem (Mitrovi¢, V (20237))

There exists locally-Sym(4) 4-valent graphs such that the
dimension of the 0-eigenspace over F» of the adjacency matrix
grows linearly with the order of the graph.

Corollary
Sym(2)3 x Sym(4) has exponential growth.
The other two groups of degree 8 as well.



Constructions

To obtain our infinite families, we start with a single graph and
then use voltage graphs to get infinitely many covers.



Constructions

To obtain our infinite families, we start with a single graph and
then use voltage graphs to get infinitely many covers.

For example, in the 3-valent case, we take Z?-covers of the
Mobius—Kantor graph.

The resulting graph has order 16n*. Computational evidence
suggests that the 1-eigenspace over F has dimension 2n* + 2 if n
is odd and 2n* + 8 if n is even.



Still much to learn

We are not even able to compute the dimensions of the
eigenspaces for general n.

We use the “trick” of finding a small support eigenvector to get a
(loose but still linear) lower bound on the dimension.

This is very ad hoc and relies on the voltages being very nice.



Still much to learn, Il
We would like to generalise to other valencies, other “top” groups
and other “bottom” (abelian) groups.

Random example:
L= (C2)" x PGL(2,7) < C21PGL(2,7) < Sym(9 x 8).

Ideally, we would do this by learning how to “predict” the size of
the eigenspaces of voltage covers...?

(At the moment, we don’t even know which eigenspace we should
be looking at.)

The dimensions often have nice (conjectured) forms.

For example, in the 4-valent case, we are taking Z‘:’, voltage covers
of a graph of order 30 (so the covers have order 30n°). The
0-eigenspaces over [F> seem to have dimension 6n° + 8 when n is
odd and 6n°® + 32 when n is even. It would be nice to be able to
explain this.



Bigger picture: questions about growth

Are there groups of intermediate growth?

Problem
(Conjecturally) Characterize groups of polynomial growth.



SODO 2024

Symmetries of Discrete Objects, Auckland, February 12-16, 2024

» Symmetries of graphs, maps and polytopes
» Group action on trees

» Expander Cayley graphs

Organisers: Florian Lehner, Jeroen Schillewaert, Gabriel Verret

https://jschillewaert.wixsite.com/s0do2024
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