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Orthomorphisms

Throughout F will be a finite field of odd order.

An orthomorphism of F is a permutation θ : F 7→ F such that the map

x 7→ θ(x)− x

is also a permutation of F.

A quadratic orthomorphism is a map of the form

θ(x) =

{
ax if x is a square,

bx if x is a nonsquare,

we can build a quasigroup (Qa,b, ∗) by

x ∗ y = x + θ(y − x)

for x , y ∈ Qa,b.

[We need both ab and (a− 1)(b − 1) to be nonzero squares]
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Applications of quadratic quasigroups

Quadratic quasigroups have been used to build

I large sets of mutually orthogonal Latin squares.

I atomic Latin squares (whose indivisible structure mimics that of the
cyclic groups of prime order).

I perfect 1-factorisations of certain complete graphs and complete
bipartite graphs.

I anti-perfect 1-factorisations.

I maximally non-associative quasigroups (where x(yz) 6= (xy)z except
when x = y = z).

I Falconer varieties (non-trivial, anti-associative, isotopically-closed
loop varieties)
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Our results: Isomorphism

Theorem: Let Qa,b and Qc,d be quadratic quasigroups over F.
Then Qa,b

∼= Qc,d iff there exists α ∈ aut(F) such that
{a, b} = {α(c), α(d)}.
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The automorphism group

Let K be the least subfield of F that contains {a, b}.

Let AΓ2L1(F |K) be the group of all affine semilinear mappings
x 7→ λα(x) + µ, where χ(λ) = 1, µ ∈ F and α ∈ aut(F) fixes every
element of K (in other words, α ∈ Gal(F |K)).

Theorem: The automorphism group of Qa,b is AΓ2L1(F |K), up to
these exceptions:

(i) If a = b, then aut(Qa,b) ∼= AGLk(K), where k = [F : K].
The automorphisms are all mappings x 7→ σ(x) + µ, where µ ∈ F
and σ : F→ F is a K-linear bijection.

(ii) If there is an integer γ such that b = aγ and γ2 = |K|, then there
are extra automorphisms of the form x 7→ λα(xγ) + µ, where
χ(λ) = −1.

(iii) If |F| = 7 and {a, b} = {3, 5}, then aut(Q) ∼= PSL2(7).
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Various varieties

Theorem: Let Qa,b be a quadratic quasigroup over F. Then

(a) Qa,b is commutative iff a+ b = 1 and either |F| ≡ 3 mod 4 or a = b.

(b) Qa,b is semisymmetric (i.e. fulfils the law xy · x = y) iff
a2 − a + 1 = 0 and either a = b or a + b = 1.

(c) Qa,b is a Steiner quasigroup (i.e. idempotent, commutative and
semisymmetric) iff either
I char(F) = 3 and a = b = −1, or
I char(F) > 3, a 6= b, a + b = ab = 1, and χ(a) = χ(−1) = −1.

(d) Qa,b is isotopic to a group iff a = b.
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Minimal subquasigroups

In Steiner quasigroups every pair of elements generates a (minimal)
subquasigroup of order 3.

So suppose Qa,b is a quadratic quasigroup over F that is not Steiner. Let
K, K0 and K1 be the subfields of F generated by {a, b}, {a} and {b},
respectively.

Theorem: Suppose that each subquasigroup of Qa,b that is generated
by two distinct elements is minimal. There are two possibilities:

(i) K contains an element that is a nonsquare in F, and K = K0 = K1.
The minimal subquasigroups of Qa,b are exactly the sets λK + µ,
where λ ∈ F∗ and µ ∈ F.

(ii) All elements of K0 ∪K1 are squares in F. If ζ ∈ F is a nonsquare,
then the minimal subquasigroups of Qa,b are exactly the sets
λζ iKi + µ, where i ∈ {0, 1}, λ ∈ F∗ is a square, and µ ∈ F.
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Minimal subquokkagroups

Theorem: Suppose there is a 2-generated subquasigroup of Qa,b that
is not minimal.

Then all such subquasigroups are exactly the sets
λK + µ, where λ ∈ F∗ and µ ∈ F. Furthermore, each of −1, a, b, 1− a
and 1− b is a square in F. There are two possibilities:

(i) K1 consists of squares only and K0 contains a nonsquare. In this
case K is generated, as a subquasigroup, by {0, 1}. The minimal
subquasigroups of Qa,b are exactly the sets ζK1 + µ, where µ, ζ ∈ F
and χ(ζ) = −1.

(ii) K0 consists of squares only and K1 contains a nonsquare. In this
case K is generated, as a subquasigroup, by {0, ζ} where ζ ∈ K and
χ(ζ) = −1. The minimal subquasigroups of Qa,b are exactly the
sets sK0 + µ, where µ, s ∈ F and χ(s) = 1.
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and χ(ζ) = −1.

(ii) K0 consists of squares only and K1 contains a nonsquare. In this
case K is generated, as a subquasigroup, by {0, ζ} where ζ ∈ K and
χ(ζ) = −1. The minimal subquasigroups of Qa,b are exactly the
sets sK0 + µ, where µ, s ∈ F and χ(s) = 1.



The original application

Theorem: For odd prime powers q the asymptotic proportion of
quadratic orthomorphisms which produce maximally non-associative
quasigroups is 

953

215
≈ 0.02908 for q ≡ 1 mod 4,

825

216
≈ 0.01259 for q ≡ 3 mod 4.

Hence it is viable to find large MNQs “randomly”.

Thanks to our new theorem, we also know that (most) different choices
give non-isomorphic results.
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Future work

You could ask all the same questions for quasigroups built from cubic
orthomorphisms, quartic orthomorphisms, etc.

A. Drápal and I. M. Wanless, Isomorphisms of quadratic quasigroups, to
appear (Proc Edinburgh Math. Soc.)

https://www.youtube.com/watch?v=ui3Kz8-Z0t0
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Happy ∼ 1st birthday Gordon


