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What I’m doing now
For a fixed dimension d , can we characterise all pairs

(v , e)

for which there is a d-polytope with v vertices and e edges?
d = 3 (Steinitz; 1906)

Theorem
There is a 3-polytope with v vertices and e edges if and only if

3

2
v ⩽ e ⩽ 3v − 6.



d = 4 (Grünbaum; 1967)

Theorem
There is a 4-polytope with v vertices and e edges if and only if

2v ⩽ e ⩽

(
v

2

)
and (v , e) ̸= (6, 12), (7, 14), (10, 20) or (8, 17).

A polytope is simple if the degree of every vertex is equal to the
dimension, i.e. if

dv = 2e.

Why are there no simple 4-polytopes with 6, 7 or 10 vertices?
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Denote by ∆m,n the (direct) sum of an m-dimensional simplex ∆m

and an n-dimensional simplex ∆n.

If P is a simple d-polytope with v vertices, then either

v = d + 1; P is a simplex ∆d

v = 2d ; P is a prism ∆1,d−1

v = 3d − 3; P is ∆2,d−2

v = 3d − 1; P is Jd (cut one vertex from a prism) or 3-cube

v = 4d − 8; P is ∆3,d−3

or v > all the preceding numbers.



Simple polytopes with more than 4d − 8 vertices:

v = 4d − 7; ∆4,4, J6

v = 4d − 6; ∆4,5, J5

v = 4d − 5; ∆4,6, J4

v = 4d − 4; ∆4,7, ∆5,5, ∆1,1,d−2, cut ∆2,d−2



d = 5 (independently by Kusunoki/Murai and
Pineda-Villavicencio/Ugon/Yost)

Theorem
There is a 5-polytope with v vertices and e edges if and only if
either
2e = 5v (i.e. simple) and v ̸= 8,
or

1

2
(5v + 3) ⩽ e ⩽

(
v

2

)
and (v , e) ̸= (9, 25), (13, 35).

In particular, e cannot equal 1
2(5v + 1) or 1

2(5v + 2).
Why?



Define the excess degree of a vertex as its degree minus the
dimension, and the excess degree of a polytope as the sum of
the excess degrees of its vertices. The excess degree of a polytope
is also equal to 2e − dv .

Theorem
(Pineda-Villavicencio/Ugon/Yost) The excess degree of a
nonsimple d-polytope is at least d − 2. Equivalently, there are no
d-polytopes with excess degree in the range [1, d − 3].



Idea of the proof: Suppose two facets F1 and F2 of a d-polytope P
intersect in a face K which is not a ridge. If k is the dimension of
K , then every vertex in K has at least d − 1− k neighbors in
F1 \ K , at least d − 1− k neighbors in F2 \ K and at least k
neighbors in K . Thus each such vertex has excess degree at least
d − k − 2. Since K has at least k + 1 vertices, the excess degree of
P is at least (k + 1)(d − k − 2), and this expression is at least
d − 2 for k in the range [0, d − 3]. This almost establishes the
Excess Theorem; the case when every two facets are either disjoint
or intersect in a ridge requires separate treatment.



The excess degree is an important and natural concept, which
encapsulates a lot of information about polytopes.

It tells us that many values of (v , e) are not attained by any
polytope.
And much more.
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Theorem
(Pineda-Villavicencio/Ugon/Yost) If a d-polytope has d + k
vertices, and k ⩽ d , then its excess degree is at least

(k − 1)(d − k),

and there is only one polytope with this minimal excess degree. If
in addition k ⩾ 4, then every other such polytope has excess
degree at least

(k − 1)(d − k) + 4.

In particular, there is no 4-polytope with 8 vertices and 17 edges,
and there is no 5-polytope with 9 vertices and 25 edges.



The next result says that nonsimple vertices are gregarious.

Theorem
If a nonsimple vertex in a d-polytope has excess degree k , then it
has at least d − k − 2 nonsimple neighbors.

This gives the alternative proof of the “Excess Theorem”.



The minimum nonsimple value d − 2 implies a special structure.

Theorem
(Pineda-Villavicencio/Ugon/Yost) Any d-polytope P with excess
exactly d − 2 either

1. has a unique nonsimple vertex, which is the intersection of
two facets, or

2. has d − 2 vertices of excess degree one, which form a
(d − 3)-simplex which is the intersection of two facets.

In particular, all nonsimple vertices have the same degree.



Polytopes with excess d − 2 and not many vertices can be
completely characterised.

Theorem
If P is a d-polytope with v vertices and excess d − 2, then either

1. v = d + 2; P is a (d − 2)-fold pyramid over a square;

2. v = 2d − 1; P is pyramid over a prism ∆1,d−2

3. v = 2d + 1; P is a pentasm

4. v = 3d − 2; P is Cd , Σd , Nd or A4

5. v = 3d − 1 and d = 4 (three examples)

6. or v ⩾ 3d .



For excess d − 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.

Theorem
Excess d − 1 is possible only when d = 3 or 5. Again, all
nonsimple vertices have the same degree. When d = 5, the
nonsimple vertices form a face; either a single vertex, an edge, or a
quadrilateral 2-face.

In both dimensions, v can be any even number from d +3 onwards.
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In contrast, excess d places severe restrictions on the number of
vertices, but no restriction on the dimension.

Theorem
Let P be a d-polytope with excess d .

1. If d ⩾ 7, P is obtained by concatenating two simple polytopes
along a simplex facet. In particular, P has d vertices with
excess degree 1.

2. If d = 5, P is obtained by concatenating two simple polytopes
along either a simplex facet or a pentagonal 2-face. Again, P
has d vertices with excess degree 1.

3. If d = 6 and all nonsimple vertices have the same degree and
they form a face.

4. If d ̸= 4 or 6, then either v = d + 2, v = 2d + 1 or v ⩾ 3d .

This gives a new proof of the nonexistence of a 5-polytope with 13
vertices and 35 edges.
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For excess d + 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.

Theorem
Excess d + 1 is possible only when d = 3, 5 or 7. If d = 3 or 5, v
can be any even number from d + 3 onwards. If d = 7, the value
v = 14 is excluded.
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Excess d + 2 is possible in all dimensions, but generally with a
severe restriction on the number of vertices.

Theorem
Suppose a d-polytope has excess d + 2 where d ⩾ 9. Then
v = d + 2.
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For the next range of values, the classification could not be simpler.
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No d-polytope whatsover has excess degree in the range
[d + 3, 2d − 7].
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Finally, examples with excess 2d − 6 are numerous.

Theorem
Fix d ; then in any d-polytope with excess 2d − 6, all nonsimple
vertices have the same degree, either 1, 2, d − 3 or 2d − 6. Such
examples exist for all sufficiently large values of v , and also for the
small values
d + 3, 2d − 2, 2d + 2, 3d − 5, 3d − 3, 3d − 1, 3d + 1, 4d − 6, 4d .



We conjecture that excess 2d − 5 is only possible if d = 3, 5 or 7.
For higher values, the situations appears chaotic. There is a
d-polytope with excess 2d − 4 in which the subgraph of nonsimple
vertices is not even connected, let alone a face.

Thank you for your attention!



If we fix f0, the question of minimising ξ is the same as
minimising f1.
For d + 3 ≤ f0 ≤ 2d − 2, the minimum value of the excess degree
is at least 2d − 6 > d − 2.

min{ξ(P) : f0 = d + k , k ≤ d} = (k − 1)(d − k).

For 2d + 1 vertices, we have

min{ξ(P) : f0 = 2d + 1} = d − 2

except when d = 4.
For 2d + 2 vertices, we have

min{ξ(P) : f0 = 2d + 2} = 2d − 6

except in some low dimensions.

Problem: what about 2d + 3 vertices? 2d + 4 . . .?
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Theorem
Let P be a d-dimensional polytope with d + k vertices, where
0 < k ≤ d.
(i) If P is a (d − k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has φ(d + k , d) edges.
(ii) Otherwise P has > φ(d + k , d) edges.
(iii) Furthermore, P has at least d − k nonsimple vertices, with
equality only if P is a M(k , d − k)-triplex

The polytope described in (i) will be denoted M(k , d − k).
The proof depends on the identity

φ(d + k − n, d − 1) + nd −
(

n

2

)
= φ(d + k, d) + (k − n)(n − 2).

Note that if there are n vertices of a polytope lying outside a given
facet, they must belong to at least nd −

(n
2

)
edges, and the facet

must by induction contain sat least φ(d + k − n, d − 1) edges.
Observe also that if P had strictly more than 2k simple vertices,
then it would have strictly more than φ(d + k , d) edges.



(a) P2 = M(2, 0) (b) M(2, 1) (c) M(2, 2) (d) P3 (e) M(3, 1)

FIGURE 1. Multiplexes

(a) Pentasm3 (b) Pentasm4

FIGURE 2. Pentasms

Triplices
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Minimizers of the number of edges, for polytopes with no more 
than 2d vertices



(a) 3-pentasm
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Minimizers of the number of edges, for polytopes with 
 2d+1 vertices
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The 4-polytopes with ten vertices and 21 edges.

Polytopes with 2d+2 vertices with minimal number of edges
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