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What I’'m doing now
For a fixed dimension d, can we characterise all pairs

(v.e)

for which there is a d-polytope with v vertices and e edges?
d = 3 (Steinitz; 1906)

Theorem
There is a 3-polytope with v vertices and e edges if and only if
3

§v<e<3v—6.



d = 4 (Griinbaum; 1967)

Theorem
There is a 4-polytope with v vertices and e edges if and only if

v
2v<ex
v<e <2>

and (v, e) # (6,12),(7,14),(10,20) or (8,17).



d = 4 (Griinbaum; 1967)

Theorem
There is a 4-polytope with v vertices and e edges if and only if

v
2v<ex
v<e <2>

and (v, e) # (6,12),(7,14),(10,20) or (8, 17).
A polytope is simple if the degree of every vertex is equal to the

dimension, i.e. if
dv = 2e.

Why are there no simple 4-polytopes with 6, 7 or 10 vertices?



Denote by Ap, , the (direct) sum of an m-dimensional simplex A,
and an n-dimensional simplex A,.

If P is a simple d-polytope with v vertices, then either
v=d+1; Pis asimplex Ay

v=2d; Pisaprism A; 41

v=3d-3; Pis Ay q_>

v =3d —1; Pis Jg (cut one vertex from a prism) or 3-cube
v=4d —8; Pis A3 q4_3

or v > all the preceding numbers.



Simple polytopes with more than 4d — 8 vertices:
v=4d -7, As4, Jo

v=4d —6; As5, Js

v=4d —5; Asp, Ja

v=4d —4; Ay7, D55, D11,q-2, cut Ao g o



d =5 (independently by Kusunoki/Murai and
Pineda-Villavicencio/Ugon/Yost)

Theorem

There is a 5-polytope with v vertices and e edges if and only if
either

2e =5v (i.e. simple) and v # 8,

or

1
26v+®<e<<g

and (v, e) # (9,25), (13, 35).
In particular, e cannot equal 3(5v + 1) or 3(5v + 2).
Why?



Define the excess degree of a vertex as its degree minus the
dimension, and the excess degree of a polytope as the sum of
the excess degrees of its vertices. The excess degree of a polytope
is also equal to 2e — dv.

Theorem

(Pineda-Villavicencio/Ugon/Yost) The excess degree of a
nonsimple d-polytope is at least d — 2. Equivalently, there are no
d-polytopes with excess degree in the range [1,d — 3].



Idea of the proof: Suppose two facets F; and F, of a d-polytope P
intersect in a face K which is not a ridge. If k is the dimension of
K, then every vertex in K has at least d — 1 — k neighbors in

F1 \ K, at least d — 1 — k neighbors in F, \ K and at least k
neighbors in K. Thus each such vertex has excess degree at least
d — k —2. Since K has at least k + 1 vertices, the excess degree of
P is at least (k +1)(d — k — 2), and this expression is at least

d — 2 for k in the range [0, d — 3]. This almost establishes the
Excess Theorem; the case when every two facets are either disjoint
or intersect in a ridge requires separate treatment.



The excess degree is an important and natural concept, which
encapsulates a lot of information about polytopes.



The excess degree is an important and natural concept, which
encapsulates a lot of information about polytopes.

It tells us that many values of (v, e) are not attained by any
polytope.

And much more.



Theorem
(Pineda-Villavicencio/Ugon/Yost) If a d-polytope has d + k
vertices, and k < d, then its excess degree is at least

(k= 1)(d — k),

and there is only one polytope with this minimal excess degree. If
in addition k > 4, then every other such polytope has excess

degree at least
(k—1)(d — k) +4.

In particular, there is no 4-polytope with 8 vertices and 17 edges,
and there is no 5-polytope with 9 vertices and 25 edges.



The next result says that nonsimple vertices are gregarious.

Theorem

If a nonsimple vertex in a d-polytope has excess degree k, then it
has at least d — k — 2 nonsimple neighbors.

This gives the alternative proof of the “Excess Theorem”.



The minimum nonsimple value d — 2 implies a special structure.

Theorem
(Pineda-Villavicencio/Ugon/Yost) Any d-polytope P with excess
exactly d — 2 either

1. has a unique nonsimple vertex, which is the intersection of
two facets, or

2. has d — 2 vertices of excess degree one, which form a
(d — 3)-simplex which is the intersection of two facets.

In particular, all nonsimple vertices have the same degree.



Polytopes with excess d — 2 and not many vertices can be
completely characterised.

Theorem

If P is a d-polytope with v vertices and excess d — 2, then either
v=d+2; Pisa(d— 2)-fold pyramid over a square;

v =2d —1; P is pyramid over a prism A1 4_»

v=2d+1; P is a pentasm

v=3d—2;,PisCq, g, Ny or A4

v=23d —1 and d = 4 (three examples)

orv > 3d.

I o



For excess d — 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.



For excess d — 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.

Theorem

Excess d — 1 is possible only when d = 3 or 5. Again, all
nonsimple vertices have the same degree. When d =5, the
nonsimple vertices form a face; either a single vertex, an edge, or a
quadrilateral 2-face.

In both dimensions, v can be any even number from d 4+ 3 onwards.



In contrast, excess d places severe restrictions on the number of
vertices, but no restriction on the dimension.



In contrast, excess d places severe restrictions on the number of
vertices, but no restriction on the dimension.

Theorem
Let P be a d-polytope with excess d.

1. Ifd > 7, P is obtained by concatenating two simple polytopes
along a simplex facet. In particular, P has d vertices with
excess degree 1.

2. If d =5, P is obtained by concatenating two simple polytopes
along either a simplex facet or a pentagonal 2-face. Again, P
has d vertices with excess degree 1.

3. If d = 6 and all nonsimple vertices have the same degree and
they form a face.

4. If d # 4 or 6, then eitherv=d+2,v=2d+1orv > 3d.



In contrast, excess d places severe restrictions on the number of
vertices, but no restriction on the dimension.

Theorem
Let P be a d-polytope with excess d.

1. Ifd > 7, P is obtained by concatenating two simple polytopes
along a simplex facet. In particular, P has d vertices with
excess degree 1.

2. If d =5, P is obtained by concatenating two simple polytopes
along either a simplex facet or a pentagonal 2-face. Again, P
has d vertices with excess degree 1.

3. If d = 6 and all nonsimple vertices have the same degree and
they form a face.

4. If d # 4 or 6, then eitherv=d+2,v=2d+1orv > 3d.

This gives a new proof of the nonexistence of a 5-polytope with 13
vertices and 35 edges.



For excess d + 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.



For excess d + 1, there is almost no restriction on the number of
vertices, but severe restrictions on the dimension.

Theorem

Excess d + 1 is possible only when d =3, 50or 7. Ifd =3 or 5, v
can be any even number from d 4+ 3 onwards. If d =7, the value
v = 14 js excluded.



Excess d + 2 is possible in all dimensions, but generally with a
severe restriction on the number of vertices.



Excess d + 2 is possible in all dimensions, but generally with a
severe restriction on the number of vertices.

Theorem
Suppose a d-polytope has excess d + 2 where d > 9. Then

v=d+2.



For the next range of values, the classification could not be simpler.



For the next range of values, the classification could not be simpler.

Theorem

No d-polytope whatsover has excess degree in the range
[d+3,2d - T7].



Finally, examples with excess 2d — 6 are numerous.

Theorem

Fix d; then in any d-polytope with excess 2d — 6, all nonsimple
vertices have the same degree, either 1, 2, d — 3 or 2d — 6. Such
examples exist for all sufficiently large values of v, and also for the
small values

d+3,2d —2,2d +2,3d —5,3d —3,3d —1,3d + 1,4d — 6,4d.



We conjecture that excess 2d — 5 is only possible if d = 3,5 or 7.
For higher values, the situations appears chaotic. There is a
d-polytope with excess 2d — 4 in which the subgraph of nonsimple
vertices is not even connected, let alone a face.



If we fix fy, the question of minimising £ is the same as
minimising f1.

For d +3 < fy < 2d — 2, the minimum value of the excess degree
is at least 2d — 6 > d — 2.

min{¢(P): fo = d + k, k < d} = (k — 1)(d — k).

For 2d + 1 vertices, we have
min{¢(P): fo=2d+1} =d —2

except when d = 4.
For 2d + 2 vertices, we have

min{&(P) : fo =2d + 2} = 2d — 6

except in some low dimensions.



If we fix fy, the question of minimising £ is the same as
minimising f1.

For d +3 < fy < 2d — 2, the minimum value of the excess degree
is at least 2d — 6 > d — 2.

min{¢(P): fo = d + k, k < d} = (k — 1)(d — k).

For 2d + 1 vertices, we have
min{¢(P): fo=2d+1} =d —2

except when d = 4.
For 2d + 2 vertices, we have

min{&(P) : fo =2d + 2} = 2d — 6

except in some low dimensions.
Problem: what about 2d + 3 vertices? 2d +4...7



Theorem

Let P be a d-dimensional polytope with d + k vertices, where
0< k <d.

(i) If P is a (d — k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has ¢(d + k, d) edges.

(ii) Otherwise P has > ¢(d + k, d) edges.

(iii) Furthermore, P has at least d — k nonsimple vertices, with
equality only if P is a M(k,d — k)-triplex



(@) P, = M(2,0)

(b) M(2,1) (c) M(2,2) d) Py () M(3,1)

FIGURE 1. Triplices

(a) Pentasm3 (b) Pentasm4

FIGURE 2. Pentasms



Theorem

Let P be a d-dimensional polytope with d + k vertices, where
0< k <d.

(i) If P is a (d — k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has ¢(d + k, d) edges.

(ii) Otherwise P has > ¢(d + k, d) edges.

(iii) Furthermore, P has at least d — k nonsimple vertices, with
equality only if P is a M(k,d — k)-triplex

The polytope described in (i) will be denoted M(k,d — k).
The proof depends on the identity

¢(d+k—n,d—1)+nd—<’2’> = ¢(d + k,d) + (k— n)(n - 2).

Note that if there are n vertices of a polytope lying outside a given
facet, they must belong to at least nd — ('2’) edges, and the facet
must by induction contain sat least ¢(d + k — n, d — 1) edges.
Observe also that if P had strictly more than 2k simple vertices,
then it would have strictly more than ¢(d + k, d) edges.
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(a) Moo (b) Mz, (c) Map (d) M3 (e) M3,

Minimizers of the number of edges, for polytopes with no more
than 2d vertices
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l(a) 3-pentasm ? (b) 4-pentasm (c) Az

Minimizers of the number of edges, for polytopes with
2d+1 vertices



Polytopes with 2d+2 vertices with minimal number of edges

b1 I a

b4 dg
Ay Bs

>4

The 4-polytopes with ten vertices and 21 edges.
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