Card Shuffle Groups

Zhishuo Zhang

The University of Melbourne

Joint work with Binzhou Xia, Junyang Zhang and Wenying Zhu.

December 11, 2023

Shuffle Cards

We are motivated by an interesting $\mathsf{paper}^{[1]}$ about mathematics in shuffling cards.

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

Card Shuffle Groups

Zhishuo Zhang

Perfect Shuffle

• Cut the deck in half:

• perfectly interleave them:

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$

Question: What is the minimum number of times needed to return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$

Question: What is the minimum number of times needed to return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since $O \in Sym(52)$

Question: What is the minimum number of times needed to return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since $O \in Sym(52)$

Question: What is the minimum number of times needed to return to the original order?

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since $O \in Sym(52)$

Question: What is the minimum number of times needed to return to the original order?

• The order of the 2*n* cards after *O* is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2*n* cards after *O* is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

 $\implies \text{The inversion number of } O \text{ is} \\ 1 + \dots + n - 1 = n(n-1)/2. \\ \implies O \text{ is even iff } n \equiv 0 \text{ or } 1 \pmod{4}.$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2n cards after O is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2*n* cards after *O* is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity.
 ⇒ *I* is even iff n ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2*n* cards after *O* is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2n cards after O is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

• The order of the 2*n* cards after *O* is

$$(0, n, 1, n+1, \ldots, n-1, 2n-1).$$

- *I* is obtained by permutating the two piles and then performing *O*. ⇒ *I* is even iff *n* and *O* have the same parity. ⇒ *I* is even iff *n* ≡ 0 or 3 (mod 4).
- Thus $\langle O, I \rangle \leq \operatorname{Alt}(2n)$ iff $n \equiv 0 \pmod{4}$.

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

Question

What is the goup structure of $\langle O, I \rangle$?

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

Question What is the your structure of

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

Question What is the goup structure of (O, I)

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

Question What is the goup structure of *(O,I)*?

Question: Can $\langle O, I \rangle$ equal Alt(2*n*) when $n \equiv 0 \pmod{4}$? Question: Can $\langle O, I \rangle$ equal Sym(2*n*) when $n \not\equiv 0 \pmod{4}$? Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition $\{0, 2n - 1\}, \{1, 2n - 2\}, \dots, \{n - 1, n\}.$

Question

What is the goup structure of $\langle O, I \rangle$?

Diaconis-Graham-Kantor

Question: What is the goup structure of $\langle O, I \rangle$?

Answered by Diaconis, Graham and Kantor in 1983^[1].

Persi Diaconis ICM talk in 1990

Ron Graham ICM talk in 1983

William M. Kantor ICM talk in 1998

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

Card Shuffle Groups

Zhishuo Zhang

Structures of $\langle O, I \rangle$

Size of each pile <i>n</i>	$\langle O, I \rangle$
$n \equiv 0 \pmod{4}$, $n > 12$ and n is not a power of 2	$C_2^{n-1} \rtimes A_n$
$n \equiv 1 \pmod{4}$	$C_2^n \rtimes A_n$
$n\equiv 2 \pmod{4}$ and $n>6$	$C_2 \wr S_n$
$n \equiv 3 \pmod{4}$	$C_2^{n-1} \rtimes S_n$
$n = 2^{f}$ for some positive integer f	$C_2 \wr C_{f+1}$
<i>n</i> = 6	$C_{2}^{2} \rtimes A_{n}$ $C_{2}^{n} \rtimes A_{n}$ $C_{2} \wr S_{n}$ $C_{2}^{n-1} \rtimes S_{n}$ $C_{2} \wr C_{f+1}$ $C_{2}^{6} \rtimes \operatorname{PGL}(2,5)$ $C_{2}^{11} \rtimes M_{12}$
<i>n</i> = 12	$C_2^{11} \rtimes M_{12}$

Table: Classification of $\langle O, I \rangle$

C_2^n : direct product of *n* copies of cyclic groups of order 2. M_{12} : the sporadic Mathieu group on 12 points.

^[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., *Adv. Appl. Math.*, 4 (1983), 175–196.

A deck of kn cards with $k \ge 2$

• cut into k piles and then perfectly interleave them (k! ways).

$$0 \qquad 0 \qquad n \qquad \cdots \qquad (k-1)n$$

$$1 \qquad 1 \qquad 1+n \qquad \cdots \qquad 1+(k-1)n$$

$$\vdots \qquad \longrightarrow \qquad \vdots \qquad \vdots \qquad \vdots$$

$$kn-1 \qquad n-1 \qquad 2n-1 \qquad \cdots \qquad kn-1$$

- Standard shuffle σ : $(i + jn)^{\sigma} = ik + j$.
- ρ_{τ} : $(i+jn)^{\rho_{\tau}} = i+j^{\tau}n$.
- The shuffle group on kn cards, denoted by $G_{k,kn}$, is generated by all possible shuffles $\rho_{\tau}\sigma$ for $\tau \in \text{Sym}(\{0, \dots, k-1\})$. $G_{k,kn} = \langle \rho_{\tau}\sigma \mid \tau \in \text{Sym}(k) \rangle = \langle \rho_{\tau}, \sigma \mid \tau \in \text{Sym}(k) \rangle$.

A deck of kn cards with $k \ge 2$

• cut into k piles and then perfectly interleave them (k! ways).

$$0 \qquad 0 \qquad n \qquad \cdots \qquad (k-1)n$$

$$1 \qquad 1 \qquad 1+n \qquad \cdots \qquad 1+(k-1)n$$

$$\vdots \qquad \longrightarrow \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$kn-1 \qquad n-1 \qquad 2n-1 \qquad \cdots \qquad kn-1$$

- Standard shuffle σ : $(i + jn)^{\sigma} = ik + j$.
- ρ_{τ} : $(i+jn)^{\rho_{\tau}} = i+j^{\tau}n$.
- The shuffle group on kn cards, denoted by G_{k,kn}, is generated by all possible shuffles ρ_τσ for τ ∈ Sym({0,..., k − 1}).
 G_{k,kn} = ⟨ρ_τσ | τ ∈ Sym(k)⟩ = ⟨ρ_τ, σ | τ ∈ Sym(k)⟩.

Literature on $G_{k,kn}$ for $k \geq 3$

- Medvedoff and Morrison^[2] in 1987 conjectured:
 - $G_{3,3n} \ge \operatorname{Alt}(3n)$ if *n* is not a power of 3;
 - $G_{4,4n} \ge \operatorname{Alt}(4n)$ if n is not a power of 2;
 - $G_{4,2^m} = \operatorname{AGL}(m,2) = C_2^m \rtimes \operatorname{GL}(m,2)$ if $m \ge 3$ is odd.
- In [2] they also proved:
 - $G_{k,kn} \leq \operatorname{Alt}(kn)$ if and only if either $n \equiv 0 \pmod{4}$, or $n \equiv 2 \pmod{4}$ and $k \equiv 0$ or 1 (mod 4).
 - $G_{k,k^m} = \operatorname{Sym}(k) \wr C_m.$

[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, *Math. Mag.*, 60 (1987), 3–14.

Literature on $G_{k,kn}$ for $k \geq 3$

• Cohen, Harmse, Morrison and Wright^[3] confirmed the latter part of MM's conjecture when k = 4.

 $(G_{4,2^m} = AGL(m, 2) \text{ for some odd integer } m \geq 3)$

• In [3] they also posed:

Shuffle Group Conjecture (2005)

For $k \ge 3$, if *n* is not a power of *k* and $(k, n) \ne (4, 2^{f})$ for any positive integer *f*, then $G_{k,kn} \ge A_{kn}$.

^[3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

Literature on $G_{k,kn}$ for $k \geq 3$

• Amarra, Morgan and Praeger^[4] confirmed the Shuffle Group Conjecture in the following cases:

▶ k > n;

- k and n are powers of the same integer $\ell \geq 2$;
- ▶ *k* is a power of 2.
- They also opened up the study of "generalized shuffle groups".

^[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, *Israel J. Math.*, 244 (2021), 807–856.

We confirmed Shuffle Group Conjecture for all the left cases.

Theorem

For $k \ge 3$, if *n* is not a power of *k* and $(k, n) \ne (4, 2^f)$ for any positive integer *f*, then $G_{k,kn} \ge A_{kn}$.

This thoerem leads to a complete classification of shuffle groups.

We confirmed Shuffle Group Conjecture for all the left cases.

Theorem

For $k \ge 3$, if *n* is not a power of *k* and $(k, n) \ne (4, 2^f)$ for any positive integer *f*, then $G_{k,kn} \ge A_{kn}$.

This theerem leads to a complete classification of shuffle groups.

Outline of the proof

Prove: $G_{k,kn} = A_{kn}$ or S_{kn} , where $k \ge 3$, *n* is not a power of *k* and $(k, n) \ne (4, 2^{f})$ for any positive integer *f*.

- G_{k,kn} is 2-transitive.
- $G_{k,kn}$ has an element with large fixed-point ratio.
- classification of 2-transitive groups and primitive groups with large fixed-point ratio.
- Exclude all the candidates except from A_{kn} and S_{kn} .

2-transitivity

- G_{k,kn} is 2-transitive iff its stabilizer on the point kn − 1, denoted by H, is transitive on {0,..., kn − 2}.
- In the proof of $G_{k,k^m} = S_k \wr C_m$, they found patterns by writing numbers $\{0, \ldots, kn 2\}$ in base k.

• Let
$$n = k^s t$$
, where $k \nmid t$ and $t > 1$. Write
 $x = (x_s k^s + \dots + x_1 k + x_0)t + X.$

We have a bijection

$$x \longleftrightarrow (x_s, \ldots, x_1, x_0; X).$$

- Find an inductive index $T(x) = |\{i \mid x_i = k 1\}|$.
- If T(x) = 0 then $x \in 0^H$. If T(x) > 0, then there eixsts $y \in x^H$ such that T(y) < T(x).