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Shuffle Cards

We are motivated by an interesting paper[1] about mathematics in
shuffling cards.

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect
shuffles., Adv. Appl. Math., 4 (1983), 175–196.
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Perfect Shuffle

Cut the deck in half:
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Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?

Answer: Yes. For example, after 52! times, since O ∈ Sym(52)

Question: What is the minimum number of times needed to return
to the original order?

Answer: 8 times.
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More patterns
The order of the 2n cards after O is

(0, n, 1, n + 1, . . . , n − 1, 2n − 1).

=⇒ The inversion number of O is
1 + · · ·+ n − 1 = n(n − 1)/2.
=⇒ O is even iff n ≡ 0 or 1 (mod 4).

I is obtained by permutating the two piles and then
performing O. =⇒ I is even iff n and O have the same parity.
=⇒ I is even iff n ≡ 0 or 3 (mod 4).

Thus ⟨O, I⟩ ≤ Alt(2n) iff n ≡ 0 (mod 4).

⟨O, I⟩ ←→all the orderings by performing a sequence of
Out-shuffles and In-shuffles
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Questions on ⟨O, I⟩

Question: Can ⟨O, I⟩ equal Alt(2n) when n ≡ 0 (mod 4)?

Question: Can ⟨O, I⟩ equal Sym(2n) when n ̸≡ 0 (mod 4)?

Answer: Both no.

Observation: out-shuffle and in-shuffle preserve the partition
{0, 2n − 1}, {1, 2n − 2}, . . . , {n − 1, n}.

Question
What is the goup structure of ⟨O, I⟩?
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Diaconis-Graham-Kantor

Question: What is the goup structure of ⟨O, I⟩?

Answered by Diaconis, Graham and Kantor in 1983[1].

Persi Diaconis
ICM talk in 1990

Ron Graham
ICM talk in 1983

William M. Kantor
ICM talk in 1998

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect
shuffles., Adv. Appl. Math., 4 (1983), 175–196.
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Structures of ⟨O, I⟩

Size of each pile n ⟨O, I⟩
n ≡ 0 (mod 4), n > 12 and n is not a power of 2 Cn−1

2 ⋊ An

n ≡ 1 (mod 4) Cn
2 ⋊ An

n ≡ 2 (mod 4) and n > 6 C2 ≀ Sn

n ≡ 3 (mod 4) Cn−1
2 ⋊ Sn

n = 2f for some positive integer f C2 ≀ Cf +1

n = 6 C6
2 ⋊ PGL(2, 5)

n = 12 C11
2 ⋊ M12

Table: Classification of ⟨O, I⟩

Cn
2 : direct product of n copies of cyclic groups of order 2.

M12: the sporadic Mathieu group on 12 points.

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect
shuffles., Adv. Appl. Math., 4 (1983), 175–196.
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A deck of kn cards with k ≥ 2

cut into k piles and then perfectly interleave them (k! ways).
0
1

kn − 1

0
1

n − 1

n
1 + n

2n − 1

(k − 1)n
1 + (k − 1)n

kn − 1

Standard shuffle σ: (i + jn)σ = ik + j .
ρτ : (i + jn)ρτ = i + jτn.
The shuffle group on kn cards, denoted by Gk,kn, is generated
by all possible shuffles ρτσ for τ ∈ Sym({0, . . . , k − 1}).
Gk,kn = ⟨ρτσ | τ ∈ Sym(k)⟩ = ⟨ρτ , σ | τ ∈ Sym(k)⟩.

Card Shuffle Groups Zhishuo Zhang 9



A deck of kn cards with k ≥ 2

cut into k piles and then perfectly interleave them (k! ways).
0
1

kn − 1

0
1

n − 1

n
1 + n

2n − 1

(k − 1)n
1 + (k − 1)n

kn − 1

Standard shuffle σ: (i + jn)σ = ik + j .
ρτ : (i + jn)ρτ = i + jτn.
The shuffle group on kn cards, denoted by Gk,kn, is generated
by all possible shuffles ρτσ for τ ∈ Sym({0, . . . , k − 1}).
Gk,kn = ⟨ρτσ | τ ∈ Sym(k)⟩ = ⟨ρτ , σ | τ ∈ Sym(k)⟩.

Card Shuffle Groups Zhishuo Zhang 9



Literature on Gk,kn for k ≥ 3

Medvedoff and Morrison[2] in 1987 conjectured:
▶ G3,3n ≥ Alt(3n) if n is not a power of 3;
▶ G4,4n ≥ Alt(4n) if n is not a power of 2;
▶ G4,2m = AGL(m, 2) = Cm

2 ⋊ GL(m, 2) if m ≥ 3 is odd.

In [2] they also proved:
▶ Gk,kn ≤ Alt(kn) if and only if either n ≡ 0 (mod 4), or n ≡ 2

(mod 4) and k ≡ 0 or 1 (mod 4).
▶ Gk,km = Sym(k) ≀ Cm.

[2] S. Medvedoff and K. Morrison, Groups of perfect shuffles, Math. Mag., 60
(1987), 3–14.
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Literature on Gk,kn for k ≥ 3

Cohen, Harmse, Morrison and Wright[3] confirmed the latter
part of MM’s conjecture when k = 4.
(G4,2m = AGL(m, 2) for some odd integer m ≥ 3)

In [3] they also posed:

Shuffle Group Conjecture (2005)
For k ≥ 3, if n is not a power of k and (k, n) ̸= (4, 2f ) for any
positive integer f , then Gk,kn ≥ Akn.

[3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine
groups, 2005, https://aimath.org/morrison/Research/shuffles.
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Literature on Gk,kn for k ≥ 3

Amarra, Morgan and Praeger[4] confirmed the Shuffle Group
Conjecture in the following cases:

▶ k > n;
▶ k and n are powers of the same integer ℓ ≥ 2;
▶ k is a power of 2.

They also opened up the study of "generalized shuffle groups".

[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J.
Math., 244 (2021), 807–856.
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Our contribution

We confirmed Shuffle Group Conjecture for all the left cases.

Theorem
For k ≥ 3, if n is not a power of k and (k, n) ̸= (4, 2f ) for any
positive integer f , then Gk,kn ≥ Akn.

This thoerem leads to a complete classification of shuffle groups.

Card Shuffle Groups Zhishuo Zhang 13



Our contribution

We confirmed Shuffle Group Conjecture for all the left cases.

Theorem
For k ≥ 3, if n is not a power of k and (k, n) ̸= (4, 2f ) for any
positive integer f , then Gk,kn ≥ Akn.

This thoerem leads to a complete classification of shuffle groups.

Card Shuffle Groups Zhishuo Zhang 13



Outline of the proof
Prove: Gk,kn = Akn or Skn, where k ⩾ 3, n is not a power of k
and (k, n) ̸= (4, 2f ) for any positive integer f .

Gk,kn is 2-transitive.
Gk,kn has an element with large fixed-point ratio.
classification of 2-transitive groups and primitive groups with
large fixed-point ratio.
Exclude all the candidates except from Akn and Skn.
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2-transitivity

Gk,kn is 2-transitive iff its stabilizer on the point kn − 1,
denoted by H, is transitive on {0, . . . , kn − 2}.
In the proof of Gk,km = Sk ≀ Cm, they found patterns by
writing numbers {0, . . . , kn − 2} in base k.
Let n = kst, where k ∤ t and t > 1. Write

x = (xsks + · · ·+ x1k + x0)t + X .
We have a bijection

x ←→ (xs , . . . , x1, x0;X ).

Find an inductive index T (x) = |{i | xi = k − 1}|.
If T (x) = 0 then x ∈ 0H . If T (x) > 0, then there eixsts
y ∈ xH such that T (y) < T (x).
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