Card Shuffle Groups

Zhishuo Zhang

The University of Melbourne
Joint work with Binzhou Xia, Junyang Zhang and Wenying Zhu.

December 11, 2023

Shuffle Cards

We are motivated by an interesting paper ${ }^{[1]}$ about mathematics in shuffling cards.

[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., Adv. Appl. Math., 4 (1983), 175-196.

Perfect Shuffle

- Cut the deck in half:

- perfectly interleave them:

$$
\begin{gathered}
\begin{array}{c}
0- \\
1-n \\
\vdots \\
\vdots
\end{array} \\
n-1-1 \\
\text { Out-shuffle } O
\end{gathered}
$$

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$
Question: What is the minimum number of times needed to return to the original order? Answer: 8 times.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$

Question: What is the minimum number of times needed to return
to the original order?
Answer: 8 times.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$
Question: What is the minimum number of times needed to return
to the original order?
Answer: 8 times.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$
Question: What is the minimum number of times needed to return to the original order?

Answer: 8 times.

Questions

Perform out-shuffles on a deck of 52 cards repeatedly.

Question: Can it return to the original order?
Answer: Yes. For example, after 52! times, since $O \in \operatorname{Sym}(52)$
Question: What is the minimum number of times needed to return to the original order?

Answer: 8 times.

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1) .
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then performing $O . \Longrightarrow I$ is even iff n and O have the same parity. $\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.

Out-shuffles and In-shuffles

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow 0$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then
performing $O . \Longrightarrow I$ is even iff n and O have the same parity.
$\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
&\langle 0,1\rangle \longleftrightarrow \text { all the orderings by performing a sequence of } \\
& \text { Out-shuffles and In-shuffles }
\end{aligned}
$$

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then
performing $O . \Longrightarrow I$ is even iff n and O have the same parity.
$\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
\langle 0,1\rangle \longleftrightarrow & \text { all the orderings by performing a sequence of } \\
& \text { Out-shuffles and In-shuffles }
\end{aligned}
$$

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then performing $O . \Longrightarrow I$ is even iff n and O have the same parity.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.
$\langle 0,1\rangle \longleftrightarrow$ all the orderings by performing a sequence of Out-shuffles and In-shuffles

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- l is obtained by permutating the two piles and then performing $O . \Longrightarrow I$ is even iff n and O have the same parity. $\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then performing $O . \Longrightarrow I$ is even iff n and O have the same parity. $\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.
$\langle O, I\rangle \longleftrightarrow$ all the orderings by performing a sequence of Out-shuffles and In-shuffles

More patterns

- The order of the $2 n$ cards after O is

$$
(0, n, 1, n+1, \ldots, n-1,2 n-1)
$$

\Longrightarrow The inversion number of O is
$1+\cdots+n-1=n(n-1) / 2$.
$\Longrightarrow O$ is even iff $n \equiv 0$ or $1(\bmod 4)$.

- I is obtained by permutating the two piles and then performing $O . \Longrightarrow I$ is even iff n and O have the same parity. $\Longrightarrow I$ is even iff $n \equiv 0$ or $3(\bmod 4)$.
- Thus $\langle O, I\rangle \leq \operatorname{Alt}(2 n)$ iff $n \equiv 0(\bmod 4)$.
$\langle O, I\rangle \longleftrightarrow$ all the orderings by performing a sequence of Out-shuffles and In-shuffles

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, /\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: out-shuffle and in-shuffle preserve the partition
$\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$

Question
What is the goup structure of $\langle O, /\rangle$?

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: out-shuffle and in-shuffle preserve the partition
$\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$.

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: out-shuffle and in-shuffle preserve the partition
$\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$

Question
What is the goup structure of $\langle 0,1\rangle$?

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: Can $\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: out-shuffle and in-shuffle preserve the partition $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$.

Questions on $\langle O, I\rangle$

Question: Can $\langle O, I\rangle$ equal $\operatorname{Alt}(2 n)$ when $n \equiv 0(\bmod 4)$?
Question: $\operatorname{Can}\langle O, I\rangle$ equal $\operatorname{Sym}(2 n)$ when $n \not \equiv 0(\bmod 4)$?
Answer: Both no.
Observation: out-shuffle and in-shuffle preserve the partition $\{0,2 n-1\},\{1,2 n-2\}, \ldots,\{n-1, n\}$.

Question

What is the goup structure of $\langle O, I\rangle$?

Diaconis-Graham-Kantor

Question: What is the goup structure of $\langle O, I\rangle$?
Answered by Diaconis, Graham and Kantor in 1983 ${ }^{[1]}$.

Persi Diaconis
ICM talk in 1990

Ron Graham
ICM talk in 1983

William M. Kantor
ICM talk in 1998
[1] P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles., Adv. Appl. Math., 4 (1983), 175-196.

Structures of $\langle O, I\rangle$

Size of each pile n	$\langle O, I\rangle$
$n \equiv 0(\bmod 4), n>12$ and n is not a power of 2	$C_{2}^{n-1} \rtimes A_{n}$
$n \equiv 1(\bmod 4)$	$C_{2}^{n} \rtimes A_{n}$
$n \equiv 2(\bmod 4)$ and $n>6$	$C_{2} \imath S_{n}$
$n \equiv 3(\bmod 4)$	$C_{2}^{n-1} \rtimes S_{n}$
$n=2^{f}$ for some positive integer f	$C_{2} \imath C_{f+1}$
$n=6$	$C_{2}^{6} \rtimes \mathrm{PGL}(2,5)$
$n=12$	$C_{2}^{11} \rtimes M_{12}$

Table: Classification of $\langle O, I\rangle$
C_{2}^{n} : direct product of n copies of cyclic groups of order 2 . M_{12} : the sporadic Mathieu group on 12 points.

A deck of $k n$ cards with $k \geq 2$

- cut into k piles and then perfectly interleave them (k ! ways).

- Standard shuffle $\sigma:(i+j n)^{\sigma}=i k+j$.
- $\rho_{\tau}:(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$.
- The shuffle group on $k n$ cards, denoted by $G_{k, k n}$, is generated by all possible shuffles $\rho_{\tau} \sigma$ for $\tau \in \operatorname{Sym}(\{0, \ldots, k-1\})$. $G_{k, k n}=\left\langle\rho_{\tau} \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle=\left\langle\rho_{\tau}, \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle$.

A deck of $k n$ cards with $k \geq 2$

- cut into k piles and then perfectly interleave them (k ! ways).

- Standard shuffle $\sigma:(i+j n)^{\sigma}=i k+j$.
- $\rho_{\tau}:(i+j n)^{\rho_{\tau}}=i+j^{\tau} n$.
- The shuffle group on $k n$ cards, denoted by $G_{k, k n}$, is generated by all possible shuffles $\rho_{\tau} \sigma$ for $\tau \in \operatorname{Sym}(\{0, \ldots, k-1\})$. $G_{k, k n}=\left\langle\rho_{\tau} \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle=\left\langle\rho_{\tau}, \sigma \mid \tau \in \operatorname{Sym}(k)\right\rangle$.

Literature on $G_{k, k n}$ for $k \geq 3$

- Medvedoff and Morrison ${ }^{[2]}$ in 1987 conjectured:
- $G_{3,3 n} \geq \operatorname{Alt}(3 n)$ if n is not a power of 3 ;
- $G_{4,4 n} \geq \operatorname{Alt}(4 n)$ if n is not a power of 2 ;
- $G_{4,2^{m}}=\operatorname{AGL}(m, 2)=C_{2}^{m} \rtimes \operatorname{GL}(m, 2)$ if $m \geq 3$ is odd.
- In [2] they also proved:
- $G_{k, k n} \leq \operatorname{Alt}(k n)$ if and only if either $n \equiv 0(\bmod 4)$, or $n \equiv 2$ $(\bmod 4)$ and $k \equiv 0$ or $1(\bmod 4)$.
- $G_{k, k^{m}}=\operatorname{Sym}(k) \imath C_{m}$.

Literature on $G_{k, k n}$ for $k \geq 3$

- Cohen, Harmse, Morrison and Wright ${ }^{[3]}$ confirmed the latter part of MM's conjecture when $k=4$.
$\left(G_{4,2^{m}}=\operatorname{AGL}(m, 2)\right.$ for some odd integer $\left.m \geq 3\right)$
- In [3] they also posed:

Shuffle Group Conjecture (2005)

For $k \geq 3$, if n is not a power of k and $(k, n) \neq\left(4,2^{f}\right)$ for any positive integer f, then $G_{k, k n} \geq A_{k n}$.

[^0]
Literature on $G_{k, k n}$ for $k \geq 3$

- Amarra, Morgan and Praeger ${ }^{[4]}$ confirmed the Shuffle Group Conjecture in the following cases:
- $k>n$;
- k and n are powers of the same integer $\ell \geq 2$;
- k is a power of 2 .
- They also opened up the study of "generalized shuffle groups".
[4] C. Amarra, L. Morgan and C. Praeger, Generalised shuffle groups, Israel J. Math., 244 (2021), 807-856.

Our contribution

We confirmed Shuffle Group Conjecture for all the left cases.
Theorem
For $k \geq 3$, if n is not a power of k and $(k, n) \neq\left(4,2^{f}\right)$ for any positive integer f, then $G_{k, k n} \geq A_{k n}$.

This thoerem leads to a complete classification of shuffle groups.

Our contribution

We confirmed Shuffle Group Conjecture for all the left cases.
Theorem
For $k \geq 3$, if n is not a power of k and $(k, n) \neq\left(4,2^{f}\right)$ for any positive integer f, then $G_{k, k n} \geq A_{k n}$.

This thoerem leads to a complete classification of shuffle groups.

Outline of the proof

Prove: $G_{k, k n}=A_{k n}$ or $S_{k n}$, where $k \geqslant 3, n$ is not a power of k and $(k, n) \neq\left(4,2^{f}\right)$ for any positive integer f.

- $G_{k, k n}$ is 2-transitive.
- $G_{k, k n}$ has an element with large fixed-point ratio.
- classification of 2-transitive groups and primitive groups with large fixed-point ratio.
- Exclude all the candidates except from $A_{k n}$ and $S_{k n}$.

2-transitivity

- $G_{k, k n}$ is 2-transitive iff its stabilizer on the point $k n-1$, denoted by H, is transitive on $\{0, \ldots, k n-2\}$.
- In the proof of $G_{k, k^{m}}=S_{k} \prec C_{m}$, they found patterns by writing numbers $\{0, \ldots, k n-2\}$ in base k.
- Let $n=k^{s} t$, where $k \nmid t$ and $t>1$. Write

$$
x=\left(x_{s} k^{s}+\cdots+x_{1} k+x_{0}\right) t+X
$$

We have a bijection

$$
x \longleftrightarrow\left(x_{s}, \ldots, x_{1}, x_{0} ; X\right) .
$$

- Find an inductive index $T(x)=\left|\left\{i \mid x_{i}=k-1\right\}\right|$.
- If $T(x)=0$ then $x \in 0^{H}$. If $T(x)>0$, then there eixsts $y \in x^{H}$ such that $T(y)<T(x)$.

[^0]: [3] A. Cohen, A. Harmse, K.E. Morrison and S. Wright, Perfect shuffles and affine groups, 2005, https://aimath.org/morrison/Research/shuffles.

